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Shepard & Metzler (1971)

How do we see these things as the same?

The image of a single object has 9 factors of variation:

• 3D position (3)

• 3D rotation (3)

• Photometric (3)

Assuming 100 distinct states for each yields   variations.1009 = 1018



image feature extraction and pooling classification

0

‘cat’



The invariant representations produced by deep 
convnets have a high false-positive rate
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Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify ob-
jects in images with near-human-level performance, ques-
tions naturally arise as to what differences remain between
computer and human vision. A recent study revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects.
Our results shed light on interesting differences between hu-
man vision and current DNNs, and raise questions about the
generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [1, 13]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[15, 5, 27, 16]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

A recent study revealed a major difference between DNN

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

and human vision [26]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static
is a motorcycle). Specifically, we use evolutionary algo-
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be a “ostrich, Struthio
camelus”, which is fast-running African flightless bird with two-toed feet, largest living bird. Average distortion
based on 64 examples is 0.006508.

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by lossf :
Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:

1. f(x+ r) = l

2. x+ r 2 [0, 1]m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ lossf (x+ r, l) subject to x+ r 2 [0, 1]m

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties, which we will
demonstrate with qualitative and quantitative experiments in this section:
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Jacobsen, J. H., Behrmann, J., Zemel, R., & Bethge, M. (2018). 
Excessive invariance causes adversarial vulnerability. arXiv:1811.00401.



What is vision for?  How did it evolve?



(Wayne Maddison)

Vision in jumping spiders

(Bair & Olshausen, 1991)
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Fig. 1A ~nd B. Two sequences  of indire ct purs uit of a  s ta nda rd lure  (ha nging fly) by a  ma ie  P . 
pulcherrimus. S e que ntia l (numbe re d) pos itions  during the  purs uit were  tra ce d from proje ctions  of a  
se ries  of individua l photogra phs  ta ke n with e le ctronic flash. In  each case  the  lure  was  re move d 
imme dia te ly a fte r the  initia l orie nta tion to the  pre y (1). A The  s pide r orie nte d to the  pre y pos ition 
(1), turne d a nd wa lke d to the  s te m of the  p la nt (2), a nd the n reoriented to face  the  expected pos ition 
of the  pre y from a  ne w pos ition (3). S ubs e que ntly the  s pide r continue d its  a s ce nt (4) to a tta in  the  
obje ctive  pos ition (5). B Afte r orie nta tion to the  pre y (1), the  s pide r re a che d for a n  a va ila ble  dra gline  
(2) which it climbe d to the  s te m (3), a nd  the n re orie nte d to face  the  obje ctive  (4). Aga in, purs uit 
continue d (5) until the  s pide r a tta ine d the  obje ctive  pos ition (6) 

r e q u ir in g  e ith e r  a  r ig h t  o r  a  le ft t u rn ,  s u g g e s ts  th a t  fa m ilia r ity  with  th e  p r o b le m  
c a n n o t  a c c o u n t  fo r th e  o b s e rve d  re s u lts .  In  s im ila r  s it u a t io n s  wh e re  a  r o u t e  o f 
a c c e s s  wa s  n o t  re a d ily  vis ib le ,  th e  s p id e rs  g e n e ra lly  c o n d u c t e d  a n  e xte n s ive  s e rie s  
o f tu rn s ,  p r e s u m a b ly  in  s e a rc h  o f s u c h  a  ro u te .  Vis u a l o r ie n t a t io n  t o w a r d  a  r o u t e  
o f a c c e s s ,  p r io r  to  p u r s u it  o f th a t  r o u t e  o f a c c e s s ,  is  re a d ily  d e m o n s t r a t e d  in  a  
n o ve l s itu a t io n .  A s ig h te d  p la n t  c o n fig u r a t io n  wh ic h  re p la c e s  th e  p r im a r y  
o b je c t ive  (p re y p o s it io n )  a s  a  d e t e r m in a n t  o f im m e d ia t e  b e h a v io r  is  t e r m e d  a  
s e condary objective . 

Orientation by Jumping Spiders During the Pursuit of Prey
(D.E. Hill, 1979) 
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Fig. 3. A A s imple  s e gme nt of line a r purs uit in a  horizonta l plane , a s  vie we d from a bove . The  s pide r 
faces  the  pre y (1), which is  imme dia te ly re move d from vie w as  the  s pide r turns  to run in purs uit (2), 
a nd the n s tops  to re orie nt (3). B De finition of te rminology us e d to de s cribe  the  purs uit s hown in (A). 
C Circula r a re na  us e d for the  obs e rva tion of orie nta tion by the  s pide r during purs uit on the  
horizonta l ba r, a s  vie we d from a bove . The  inne r white  pa pe r cylinde r (1) rises  to the  le ve l of the  top  
of the  running ba r, while  the  oute r cylinde r (0) extends  to a  he ight of 30 cm a bove  the  bar. P rior to 
e a ch tria l, the  s pide r was  le d ba ck to a  ce nte r pos ition (1) on the  horizonta l ba r with a  s ta nda rd lure , 
to ma inta in a  cons ta nt pre y dis ta nce  of a bout 25 cm a t the  initia l s ighting. To initia te  e a ch tria l, the  
pre y was  pre s e nte d to the  s pide r in a  circumfe re ntia l pos ition (2). S ubs e que ntly, a s  the  pre y wa s  
droppe d be low the  vie w of the  s pide r (be tween the  two cylinders ), the  s pide r ra n to a  ne w pos ition (3) 
on the  horizonta l ba r a nd re orie nte d in the  dire ction of pos ition (4) on the  circumfe re ntia l sca le . 
F rom a  re cord of va lue s  1-4, the  de s criptive  te rms  de fine d in (B) could be  ca lcula te d for e a ch tria l. D 
P e rs pe ctive  vie w of horizonta l ba r in corridor, s howing how the  s us pe nde d fly could be  conce a le d in 
the  trough during the  purs uit a nd re orie nta tion of the  spider. E Horizonta l ba r in corridor vie we d 
from a bove . As  in (C), a  re cord of pos itions  I-4  wa s  ma de  for e a ch tria l. The  pre y dis ta nce  for a  give n 
0 could be  va rie d by cha nging the  dis ta nce  (L) be twe e n the  ba r a nd the  pe riphe ra l (fly pos ition) s ca le  

d ir e c t ly  (0c) in c re a s e s .  As  s h o w n  h e re  (F ig .  4 A),  0c wa s  a n  e ffe c t ive  p r e d ic t o r  o f 
th e  o b s e r v e d  r e o r ie n t a t io n  a n g le  (0r). 

A m o r e  r ig o r o u s  d e m o n s t r a t io n  o f th e  ro le  o f t h e  im m e d ia t e  r o u t e  (o r 
d ir e c t io n  o f p u rs u it )  a s  a  re fe re n c e  d ire c t io n ,  to  th e  e xc lu s io n  o f p e r ip h e r a l v is u a l 
c u e s ,  is  p r o v id e d  b y  th e  a b ility  o f Phidippus  to  c o m p le t e  a  s e g m e n t  o f p u rs u it ,  
fo llo w e d  b y  a n  a c c u r a t e  r e o r ie n t a t io n  (with  0~ a s  a  p r e d ic t o r  o f 0~), in  c o m p le t e  
d a rkn e s s  (F ig .  4 B).  

It  is  e v id e n t  t h a t  e a c h  r e o r ie n t a t io n  r e p re s e n t s  a n  a t t e m p t  b y th e  s p id e r  to  
fa c e  th e  e x p e c t e d  p o s it io n  o f its  p re y.  B a s e d  u p o n  d e fin it io n s  p r o v id e d  in  
F ig .  3 B,  o n e  c a n  c o n c lu d e  th a t  0~ ( th e  o p t im a l r e o r ie n t a t io n  a n g le )  is  a  fu n c t io n  
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Fig . 4. A Be h a vio r o f a  fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l b a r (Fig . 3C), in  re s p o n s e  to  a  
va ria b le  d ire c tio n  o f p re y p re s e n ta tio n  (va ria b le  0). He re  th e  m e a s u re d  a n g le  o f re o rie n ta tio n  with  
re fe re nce  to  th e  d ire c tio n  o f p u rs u it  (0~) is  p re s e n te d  a s  a  fu n c tio n  o f b o th  th e  in itia l o rie n ta tio n  a n g le  
(0) a n d  th e  c a lc u la te d  (m o ve m e n t  c o m p e n s a te d ) re o rie n ta tio n  a n g le  re q u ire d  to  b rin g  th e  s p id e r to  
fa ce  th e  o rig in a l p re y p o s itio n  d ire c tly (0c). As  in  s u b s e q u e n t figure s , th e  lin e a r re g re s s io n  o f Y o n  X 
is  in d ic a te d  a s  a  dashed line . B Be h a vio r o f a  d iffe re n t fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l ba r.  
As  in  (A), th e s e  d a ta  we re  o b ta in e d  with  th e  a p p a ra tu s  d e s c rib e d  in  F ig . 3C . F o r th e s e  tria ls ,  
h o we ve r,  th e  o ve rh e a d  lig h t wa s  s witc h e d  o ff a s  s o o n  a s  th e  s p id e r tu rn e d  to  ru n  in  p u rs u it.  O n ly 
th o s e  tria ls  in  wh ic h  th e  re o rie n ta tio n  tu rn  h a d  b e e n  e xe c u te d  comple te ly p rio r to  th e  tim e  a t wh ic h  
th e  lig h t wa s  s u b s e q u e n tly tu rn e d  o n  (s e ve ra l s e c o n d s  la te r) a re  s h o wn  he re . In  o n e  o f th e s e  tria ls  th e  
s p id e r wa s  e ve n  p re p a rin g  to  ju m p  in  th e  p re y d ire c tio n  a s  th e  ligh t we n t on .  In  a  n u m b e r  o f tra ils ,  
th is  s p id e r d id  n o t  re o rie n t un til a fte r th e  lig h t wa s  s witc h e d  o n ,  a n d  th e s e  tria ls  we re  n o t  re c o rd e d .  
In  a ll re s p e c ts  th e s e  d a ta  c o m p a re  with  th o s e  co lle c te d  u n d e r c o n d itio n s  o f c o n tin u o u s  illu m in a tio n ,  
a s  in  (A). It s h o u ld  b e  n o te d  th a t  th e  s p id e rs  always  re o rie n te d  to  th e  c o rre c t s ide  (wh e th e r rig h t o r 
le ft) o f th e  b a r 

308 D.E. Hill 

o . : . ,  ._o "'. ~i~;~/ 
".: ,~:~"  9 

0 

~, , - " ;  i_,,~-'" ~ = o.8~ _ '.J~.=" _ ~ =  ..4+-o.~ ~ 
. - , / ~ "  S" = 4.4 cm 

o 3'0 60 )o 
Initlol Orientation Angle  (O/  

i i f i i i i 

 9 / 

 9  9 ~ 1 4 9  

. :  

 9  9  9 

cO* , 

 9 ~'~k . :. ~  N = 322 

 9 ~ "~'~" z  9   9 

30 60  
Compensated Reorientation Angle  /g  c) 

B 
9(f 

.~ 6 0  

"6 
z 
0 

,~ 30 

0 o 

i i i i i i i i 
/ 

/ 
 9 / /  

 9  9 1 4 9  z ~  

 9 6 / J  

 9 e  9  e e e z  . . = . ~ , . . .  / 

 9 ~ i. ~  ~ " 
..~, o~  9 o //  9 o "  9   9 . ,  - ~ . . .  

/ oe   9 

/ / e . ~ / / " " 
, , "  7 .  " N ~ U O  

," ~ r = 0.78 
," ~/. ~ = 12.6~-o.r 

- ~=6.8 cm 

3'0 60 
Initial Orientation Angle  ( 8 )  

i i i i i I , i 

/ /  

 9 o o o  
 9 o o  9  9  9 

. .  

;/ '.  t 
, , ;/  , . N= 12o I- 

, r:O.o t 
' ' :JO " " 60  ' ' 9 0  ~ 

Compensated Reorientation Angle ( e  c) 

Fig . 4. A Be h a vio r o f a  fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l b a r (Fig . 3C), in  re s p o n s e  to  a  
va ria b le  d ire c tio n  o f p re y p re s e n ta tio n  (va ria b le  0). He re  th e  m e a s u re d  a n g le  o f re o rie n ta tio n  with  
re fe re nce  to  th e  d ire c tio n  o f p u rs u it  (0~) is  p re s e n te d  a s  a  fu n c tio n  o f b o th  th e  in itia l o rie n ta tio n  a n g le  
(0) a n d  th e  c a lc u la te d  (m o ve m e n t  c o m p e n s a te d ) re o rie n ta tio n  a n g le  re q u ire d  to  b rin g  th e  s p id e r to  
fa ce  th e  o rig in a l p re y p o s itio n  d ire c tly (0c). As  in  s u b s e q u e n t figure s , th e  lin e a r re g re s s io n  o f Y o n  X 
is  in d ic a te d  a s  a  dashed line . B Be h a vio r o f a  d iffe re n t fe m a le  P. pulcherrimus  o n  th e  h o riz o n ta l ba r.  
As  in  (A), th e s e  d a ta  we re  o b ta in e d  with  th e  a p p a ra tu s  d e s c rib e d  in  F ig . 3C . F o r th e s e  tria ls ,  
h o we ve r,  th e  o ve rh e a d  lig h t wa s  s witc h e d  o ff a s  s o o n  a s  th e  s p id e r tu rn e d  to  ru n  in  p u rs u it.  O n ly 
th o s e  tria ls  in  wh ic h  th e  re o rie n ta tio n  tu rn  h a d  b e e n  e xe c u te d  comple te ly p rio r to  th e  tim e  a t wh ic h  
th e  lig h t wa s  s u b s e q u e n tly tu rn e d  o n  (s e ve ra l s e c o n d s  la te r) a re  s h o wn  he re . In  o n e  o f th e s e  tria ls  th e  
s p id e r wa s  e ve n  p re p a rin g  to  ju m p  in  th e  p re y d ire c tio n  a s  th e  ligh t we n t on .  In  a  n u m b e r  o f tra ils ,  
th is  s p id e r d id  n o t  re o rie n t un til a fte r th e  lig h t wa s  s witc h e d  o n ,  a n d  th e s e  tria ls  we re  n o t  re c o rd e d .  
In  a ll re s p e c ts  th e s e  d a ta  c o m p a re  with  th o s e  co lle c te d  u n d e r c o n d itio n s  o f c o n tin u o u s  illu m in a tio n ,  
a s  in  (A). It s h o u ld  b e  n o te d  th a t  th e  s p id e rs  always  re o rie n te d  to  th e  c o rre c t s ide  (wh e th e r rig h t o r 
le ft) o f th e  b a r 
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A typical example of a round trip is shown in Fig. 2. Cataglyphis 
fortis, for which this foraging trip was recorded (and on which the present 
account mainly concentrates), is a long-distance forager inhabiting the 
exceedingly hostile territories of the Saharan salt pans known as chotts 
and sebkhas. In this habitat the outward and inward routes of individual 
foraging trips were recorded by the aid of an orthogonal system of grid-
lines painted on the hard salty plains. The ant whose round trip is shown 
in Fig. 2 covered 165 m within 468 sec until it found a dead fly at a 
distance of 87 m from the nest. After having grasped the fly with its 
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Fig. 2. -Round trip of an individual 
ant, Cataglyphis fortis. The ant's walk-
ing trajectory has been recorded by 
means of a grid of white lines (mesh 
width 5 m) painted on the floor of a 
North African salt pan. Time marks 
(filled circles) are given every 60 sec. 
The locations of the nest and of the 
insect carcass found by the ant are 
denoted by N and F, respectively. 

mandibles it instantly headed for 
home which it reached after an amaz-
ingly straight run lasting no more than 
162 sec. Given the fact that the ter-
rain over which the ant moved was 
not an ideally flat plain, so that even a 
long-legged fortis ant had to perform 
small up and down as well as sideways 
movements while heading for home, a 
mean speed of 0.54 rn/sec as calculat-
ed for the bee-line distance of 87 m is 
a truly remarkable performance for an 
insect weighing as little as 9 mg (mean 
value). 

Even if amazing in terms of 
speed, distance covered, and precision 
of navigation, the foraging trip depict-
ed in Fig. 2 is by no means exception-
al. In the vast expanses of the Chott 
Merouan and the Chott-el-Djeridj we 
have observed fortis ants which for-
aged at distances of more than 150m 
away from the nest and selected their 
proper homeward courses with what 
still appeared to be unerring precision. 
These are the largest trips ever record-
ed in detail in an invertebrate. 

How do the ants navigate on 
such long-distance trips? A simple ex-
periment shows that they rely on a 
path integration system rather than 
the use of a landmark map. If dis-
placed sideways by only a few metres, 
they do not head for true home, but 

Path integration in desert ants

(R. Wehner, S. Wehner, 1986) 



Navigation in fruit flies

?



Head-direction cells in ellipsoid body of Drosophila
(Seelig & Jayaraman 2015) 

Ellipsoid body activity
(calcium imaging

Decoded vs. actual head dir.



semicircular canals



Perception of 3D shape from motion



Randomized dot motion



A
A

A A

A

Shepard & Metzler (1971)

Our ability to see these as the same stems from 
our ability to infer the transformation between them.



How to compute transformations?  
How does the brain do it?
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TWO n e u r a l m e c h a n is m s  a r e  d e s c r ib e d  wh ic h  e xh ib it  r e c o g n it io n  o f 
fo rm s .  B o t h  a re  in d e p e n d e n t  o f s m a ll p e r t u r b a t io n s  a t  s y n a p s e s  o f e x- 
c ita t io n ,  th re s h o ld ,  a n d  s yn c h ro n y ,  a n d  a re  r e fe r r e d  to  p a r t ic u la r  a p p ro -  
p r ia t e  re g io n s  o f th e  n e l~ o u s  s ys te m ,  t h u s  s u g g e s t in g  e x p e r im e n t a l ve r i-  
fic a t io n .  Th e  fir s t  m e c h a n is m  a v e r a g e s  a n  a p p a r it io n  o ve r  a  g ro u p ,  a n d  
in  t h e  t r e a t m e n t  o f t h is  m e c h a n is m  it  is  s u g g e s t e d  t h a t  s c a n s io n  p la y s  
a  s ig n ific a n t  p a r t .  Th e  s e c o n d  m e c h a n is m  re d u c e s  a n  a p p a r it io n  to  a  
s t a n d a r d  s e le c te d  fr o m  a m o n g  its  m a n y  le g it im a t e  p r e s e n t a t io n s .  T h e  
fo r m e r  m e c h a n is m  is  e xe m p lifie d  b y  th e  re c o g n it io n  o f c h o rd s  r e g a r d le s s  
o f ~ p itc h  a n d  s h a p e s  r e g a r d le s s  o f s ize .  T h e  la t t e r  is  e xe m p lifie d  h e re  
o n ly  in  t h e  re fle x ive  m e c h a n is m  t r a n s la t in g  a p p a r it io n s  to  t h e  fo ve a .  
Bo th  a re  e x te n s io n s  to  c o n t e m p o ra n e o u s  fu n c t io n s  o f th e  k n o w in g  o f u n i-  
ve r s a ls  h e r e t o fo r e  t r e a t e d  b y  t h e  a u t h o r s  o n ly  w ith  r e s p e c t  to  s e q u e n c e  
in  t im e .  

To  d e m o n s t ra te  e xis te n tia l c o n s e q u e n c e s  o f kn o wn  c h a ra c te rs  o f 
n e u ro n s ,  a n y th e o re tic a lly c o n c e iva b le  n e t  e m b o d yin g  th e  p o s s ib ility 
will s e rve .  It  is  e q u a lly le g it im a te  to  h a ve  e ve ry n e t  a c c o m p a n ie d  b y 
a n a to m ic a l d ire c t io n s  a s  to  w h e r e  to  re c o rd  th e  a c tio n  o f its  s u p p o s e d  
c o m p o n e n ts ,  fo r  e xp e r im e n t  will s e rve  to  e lim in a te  th o s e  wh ic h  d o  
n o t  fit th e  fa c ts .  Bu t  it is  wis e  to  c o n s tru c t  e ve n  th e s e  n e ts  s o  th a t  
th e ir  p rin c ip a l fu n c t io n  is  little  p e r tu rb e d  b y S ma ll p e r tu rb a t io n s  in  
e xc ita tio n ,  th re s h o ld ,  o r  d e ta il o f c o n n e c tio n  with in  th e  s a m e  n e ig h - 
b o rh o o d .  G e n e s  c a n  o n ly p re d e te rm in e  s ta tis t ic a l o rd e r,  a n d  o rig in a l 
c h a o s  m u s t  re ig n  o ve r n e ts  th a t  le a rn ,  fo r  le a rn in g  b u ild s  n e w o rd e r  
a c c o rd in g  to  a  la w o f us e . 

Nu m e ro u s  n e ts ,  e m b o d ie d  in  s pe c ia l n e rvo u s  s t ru c tu re s ,  s e rve  to  
c la s s ify in fo rm a t io n  a c c o rd in g  t o  u s e fu l c o m m o n  c h a ra c te rs .  In  vi- 
s io n  th e y d e te c t  th e  e q u iva le n c e  o f a p p a r it io n s  re la te d  b y  s im ila rity 
a n d  c o n g ru e n c e ,  like  th o s e  o f a  s in g le  p h ys ic a l th in g  s e e n  fro m  va ri- 
o u s  p la ce s .  In  a u d itio n ,  th e y re c o g n iz e  t im b re  a n d  c h o rd ,  re g a rd le s s  
o f p itch .  Th e  e q u iva le n t a p p a rit io n s  in  a ll c a s e s  s h a re  a  c o m m o n  
fig u re  a n d  de fine  a  g ro u p  o f t ra n s fo rm a t io n s  th a t  ta ke  th e  e q u iva - 
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FmURE 2. Impu ls e s  o~ s ome  chord e nte r s la ntwis e  a lo ng  th e  s pe cific a ffe re n ts , 
m a rke d  b y p lus s e s , a n d  a s ce nd  u n til the y re a c h  th e  le ve l SY/a in  the  co lumns  o f 
the  re ce p tive  la ye r a c tiva te d  a t the  m o m e n t b y the  nons pe cific  a ffe re n ts .  The s e  
p rovide  s u m m a tio n  a de qua te  to  p e rm it the  impu ls e s  to  e nte r th a t le ve l but no  
othe r. F ro m  th e re  th e  impuls e s  de s ce nd a long  co lumns  to th e  de p th . The  le ve l in  
the  co lumn, fa c ilita te d  by th e  nons pe cific  a ffe re n ts ,  move s  re p e titive ly u p ' a nd 
down, s o  tha t the  e xc ite me n t de live re d  to  the  de p ths  move s  unifo rmly  ba c k a nd 
fo rth a s  if th e  s ounds  move d u p  a n d  down to g e th e r in  p itch , p re s e rvin g  in te rva ls .  
In  th e  de e p co lumns  va rio us  c o mbina tio ns  a re  ma de  o f the  e xc ita tio n a nd a re  a xe r- 
a ge d  d u rin g  a  cycle  o f s c a ns io n to  p roduce  re s u lts  de pe nd ing  o n ly on  the  chord. 

The  s e condary auditory corte x has  s e parate  s pe cific  a ffe re nts  and 
the  s ame  s tructure  as  the  primary e xce pt fo r pos s e s s ing  s ome  large  
pyramids  known to  s e nd axons  to  dis tant place s  in the  corte x s uch 
as  the  motor fa c e  and s pe e ch are as . 

In this  cas e , the  fundame nta l manifo ld Jr/ is  a one -dime ns .ional 
s trip, and x is  a s ingle  coordinate  me as uring  pos ition a long  it. The  
gToup G is  the  group o f unifo rm trans la tions  which tra ns fo rm a dis - 
tribution ~ (x ,  t) o f e xc ita tion a long the  s trip into  T~  - -  ~ (x + ~ ,  t) .  
The  group G is  thus  de te rmine d by adding  the  various  cons tants  to  
the  coordinate  x ,  and the re fo re  be longs  ~to proble m 1. The  s e t o f 
manifo lds  ~ T is  a s e t o f s trips  ~ /~  that could be  obta ine d by s liding  
the  who le  o f ~ /~  back and fo rth various  dis tance s  a long  .its  le ngth. The  
s ame  e ffe ct is  obtaine d by s lanting  the  a ffe re nt fbe rs  upward, as  in 
Fig ure  2, and in the  auditory corte x its e lf whe re  the  le ve ls  in the  
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the frame of reference is known in advance the rctinotopic features 
can he made to activate the appropriate object-based features by 
simply turning on the right mapping unit and inhibiting all the others. 

Hach pairing of an activated object-based feature and an activated 
rctinotopic feature sends activation to the corresponding mapping 
unit, so if the shape is known in advance it is easy to find the reference 
frame by simply activating the object-based features of the shape. If 
the shape contains f features there will be f correct pairings of an 
activated object-based feature with an activated rctinotopic feature. 
These f pairings will all send activation to the same mapping unit and 
it will therefore be able to win a competition among the mapping units 
even though some of its rivals receive input from other spurious 
pairings of activated object-based and rctinotopic features. 

When neither the reference frame nor the shape are known in 
advance, the network will still settle to a consistent state when 
presented with a single familiar letter. Initially many different 
mapping units will be active and the activity in the object-based units 
will represent the superposition of many different ways of mapping 
the retinotopic features. However, combinations of object-based 
features that correspond to familiar letters will receive top-down 
support from the letter units and so they will be enhanced. Once this 
happens, the mappings that led to these features will be enhanced 
because the input to a mapping unit depends on the product of 
activity levels in the object-based and rctinotopic units. This mutual 
enhancement is a non-linear cooperative process that eventually leads 
to one set of object-based features and one mapping unit becoming 
dominant. 

A different, but equivalent, view of the network is that the retinotopic 
units gate the connections between the mapping units and the object-
based units. Kach reunotopic feature is consistent with various 
possible conjunctions of a mapping with an object-based feature and 
so it allows all such pairs to support each other. The network settles 
into a state which allows as many of these pairs as possible to be active, 
subject to the constraint that only one mapping unit must be active in 
the final state. This view is helpful in understanding illusory 
conjunctions. It is the retinotopic features which determine the 
consistency between object-based features and mappings. If they are 
removed before the network has finished settling, there is nothing to 
prevent the object-based units and the mapping units from settling to 
inconsistent states. 

2. The Simulation 
To test the claim that a parallel model of shape recognition can 
explain the psychological evidence on illusory conjunctions, a 
simulation of such a model was performed on a Symbolics 3600 lisp 
machine. A network of continuous valued, neuron-like units was 
presented with the rctinotopic features of several letters, and the 
activation levels of the units were repeatedly updated starting from 
balanced initial values and using a deterministic, synchronous 
relaxation algorithm until a letter had been located and identified. 
When allowed to run to completion, the network never made any 
errors. However, when a random mask replaced the image before the 
network was finished, illusory conjunctions occurred. 

The Image 

Retinotopic Units Object-based Units 

Figu re 1.1: This shows four types of unit and how they are connected. 
Only the units and connections relevant for one particular input are shown. 
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Bilinear models for factorizing ‘form’ and ‘motion’

Pitts & McCulloch (1947)  -  neural remapping circuits
Hinton (1981; 1985; 2011; 2017)  -  remapping frames of reference
Anderson & Van Essen (1987)  - ‘shifter circuits’
Olshausen, Anderson & Van Essen (1993)  -  dynamic routing
Tenenbaum & Freeman (2000)  - separation of content and style
Arathorn (2002)  -  Map seeking circuits
Grimes & Rao (2005)  -  bilinear sparse coding
Memisevic & Hinton (2010)  -  higher-order Boltzmann machines
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Lie groups for modeling continuous transformations

Zhang (1996)  -  head direction cells

Rao & Ruderman (1999)  -  learning translation and rotation

Miao & Rao (2007)  -  learning multiple transformations

Sohl-Dickstein, Wang & Olshausen (2010)  -  learned from natural movies

Culpepper & Olshausen (2010)  -  manifold transport operators

Cohen & Welling (2014)  -  posterior inference

Gklezakos & Rao (2017)  -  transformational sparse coding

Connor & Rozell (2023)  -  learning 3D transformations from 2D projections
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while the latent traversal plots show that the model has learned horizontal stretching and shearing271

transformations. Figure 2 also shows the columns of the learned W matrix. The reason that the272

dictionary did not learn the digit “1” is because, during inference, it always uses the learned horizontal273

stretching transform to “squeeze” a “0” into a “1”, so that a separate “1” template is not necessary. In274

our experiments we found that one could learn the “1” template if a prior on s with a narrow peak275

near 0 is used instead of a uniform prior, with the intuition being that the narrow prior prevents large276

horizontal stretching transformations from being used to squeeze a “0” into a “1”.277

We compare LSC to sparse coding alone by training it on MNIST as well with the same number of278

dictionary elements. The learned dictionary �, as well as the inference process, is shown on the right279

of figure 4. For comparison, the same five example inputs I were used in inference for both LSC and280

sparse coding. As can be seen, the reconstruction Î is significantly degraded without a transformation281

model. The inferred sparse representation ↵̂ is also less sparse and less interpretable than LSC – e.g.,282

the ‘8’ is described as a combination of ‘2’,‘0’ and ‘9’. Also, note that the dictionary � learned by283

sparse coding requires more than one template to capture the different poses of a digit, such as the284

slanted ‘1’ in the 4th dictionary element and the upright ‘1’ in the 7th element.285

Figure 4: Top left: Inference and image reconstruction for five example inputs I from MNIST using
LSC. Bottom left: Latent traversals of the transformation parameters s1 and s2 using LSC. Orange
figure shows latent traversal of s1 from �1.5 to 1, while green figure shows latent traversal of s2
from �1.5 to 1. Top right: Inference and image reconstruction for the same five example inputs I
using sparse coding. Both LSC and sparse coding have been trained on MNIST for 20 epochs.

We demonstrate the improvement of LSC over sparse coding quantitatively in table 1. We train both286

algorithms on the same datasets while ensuring that both models use the same dictionary size and287

sparsity cost. After training for 20 epochs, we evaluate the two algorithms on a test set and calculate288

the reconstructed images’ SNR (signal-to-noise ratio). LSC outperforms sparse coding in all settings,289

and the improvement in SNR is over 10 times on the 2D translation dataset. This is particularly290

remarkable considering that we set the dimension of the transformation parameter s in LSC to be291

n = 2, meaning LSC only has two more degrees of freedom than sparse coding during the inference292

process.293

6 Discussion294

In this work, we study the problem of disentangling factors of variation in images, specifically discrete295

patterns vs. continuous transformations, which remains an open theoretical problem. To approach the296

problem, we combine Lie Group transformation learning and sparse coding within a Bayesian model.297

We show how spatial patterns and transformations can be learned as separate generative factors and298
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Factorizing images with Lie group transformations 
and sparse coding

(Ho Yin Chau, Yubei Chen, Frank Qiu)

I = T(s)�↵+ ✏
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T(s) = eAs (1)

= W e⌃s WT = WR(s)WT (2)
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2 Model

2.1 Model and Theoretical Background

Let I 2 RD be the input image. We model I as

I = WR(s)WT ↵+ ✏

where W 2 RD⇥D is orthogonal matrix,  2 RD⇥K , ↵ 2 RK , ✏ ⇠ N (0;�2 ) and

R(s) =

2
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3

777775

so R(s) is a block diagonal matrix with each block being a 2⇥ 2 rotation matrix. Note that we assume D is
an even number.
This is very similar to the one-parameter model detailed in section 3.3 of the paper by Cohen and Welling
(2014), so the interested reader may refer to that paper for further details. We will explain the motivation
for this model. We want to represent our image as the result of a one-parameter transformation applied to
a base template formed by a linear combination of filters, so that

I = T (s) ↵

where T (s) is the transformation that is parameterized by one parameter,  2 RD⇥K is a bank of K filters,
and ↵ 2 RK encode the coe�cients for each filter. For example, for MNIST digits, we might want K = 10,
with each filter in  corresponding to one digit. Now, since our set of transformations form a one-parameter
subgroup of SO(n), we can write (Hall, 2015)

T (s) = eAs

where A 2 so(n), which is precisely the set of skew-symmetric matrices (Gallier and Xu, 2002). Moreover,
since A is skew-symmetric, it can be block diagonalized as A = W⌃WT (Zumino, 1962). Here, both W and
⌃ are real matrices, W is orthogonal, and

⌃ =

2

666664

0 �!1

!1 0
. . .

0 �!D/2

!D/2 0

3

777775

Then
T (s) = We⌃sWT = WR(s)WT

As of now, !i can take on any value. However, if we additionally assume our transformations to form a Lie
group, then it is a closed subgroup of SO(n), and since SO(n) is compact, our group of transformations
must be compact as well. Then we can restrict the possible values of !i to integers (see Cohen and Welling
(2014) for details). From now on, all derivation will assume that !’s are integers. This assumption is needed
later for our conjugate prior to work.

2.2 Loss Function

Now we want to maximize the log likelihood of ↵:

ln p(I|↵) = ln

Z 2⇡

0
p(I|s,↵)p(s)ds

2

I = WR(s)WT �↵+ ✏
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Algorithm 1 Lie Group Sparse Coding Algorithm
1: ✓ = {W ,�} {W0,�0} . Initialize model parameters
2: while W ,� not converged do
3: Get normalized image batch I
4: ↵ ↵0 . Initialize sparse coefficients ↵̂
5: for i 2 {1, · · · , T} do . Compute ↵̂ = argmax↵ P✓(↵|I)
6: Compute P✓(s|I,↵)
7: �↵ Es⇠P✓(s|I,↵)[r↵ lnP✓(I|s,↵)] +r↵ lnP✓(↵) . Compute gradient for ↵
8: ↵ FISTA update(↵,�↵) . Update ↵ using FISTA
9: ↵̂ ↵

10: Compute P✓(s|I, ↵̂)
11: �� Es⇠P✓(s|I,↵̂)[r� lnP✓(I|s, ↵̂)] . Compute approximate gradient for �
12: � Normalize(�+��) . Update � and normalize columns
13: �W  Es⇠P✓(s|I,↵̂)[rW lnP✓(I|s, ↵̂)] . Compute approximate gradient for W
14: W  RiemannianAdam(W ,�W ) . Update W with RiemannianAdam optimizer

the approximate gradient
r✓ lnP✓(I) ⇡ Es⇠P✓(s|I,↵̂)[r✓ lnP✓(I|s, ↵̂)] (4)

where ↵̂ = argmax↵ P✓(↵|I) is the MAP estimate of the hidden variable ↵ (see Appendix C for
derivation details). Notice moreover that

r✓ lnP✓(I|↵̂) = Es⇠P✓(s|I,↵̂)[r✓ lnP✓(I|s, ↵̂)] (5)
and that the right hand side Eq. 5 is just our approximate gradient in Eq. 4. Hence, another inter-
pretation is that we replaced the original objective function lnP✓(I) by the approximate objective
function lnP✓(I|↵̂), which is much more computationally tractable than the original (see Appendix
B for an explicit formula for lnP✓(I|↵), and Appendix C for derivation details). The approximation
step assumes that the posterior distribution P (↵|I) is sharply peaked around ↵̂, P (↵|I) ⇡ �(↵�↵̂),
where �(x) is the Dirac delta function. This is the same approximation used in the sparse coding
algorithm by Olshausen & Field (1997). Also note the similarity between this approach and the
EM algorithm, as each gradient step partially maximizes the expectation of the log likelihood with
respect to the posterior distribution of the hidden variable given the current parameters. On the other
hand, the MAP estimate ↵̂ is computed by gradient ascent on the log-posterior, whose gradient is
computed via

r↵ lnP✓(↵|I) = Es⇠P✓(s|I,↵)[r↵ lnP✓(I|s,↵)] +r↵ lnP✓(↵) (6)
(see Appendix C for derivation details). Note that both Eq. 4 and 6 require inferring the posterior
distribution of the transformation variable P✓(s|I,↵). We show how this posterior distribution can
be computed in Appendix B.

One may wonder whether the posterior distribution P (s|I,↵) can be approximated by �(s� ŝ), just
as we did for Eq. 4. This would allow us to avoid computing the full distribution and use the point
estimate ŝ = argmaxs P✓(s|I,↵) (optimized using gradient descent) in order to update the model
parameters. We find empirically that using this approach leads to worse convergence of the model
parameters, and we believe there are two reasons for this: first, during the initial stages of training,
the posterior distribution of s has many local extrema, and hence using a single point estimate ŝ
is a bad approximation; second, the presence of many local extrema during initial stages means it
is easy to get stuck in a local minimum using gradient descent. Furthermore, when the number of
transformation parameters is small (which is the case here), it is faster to simply compute the full
distribution of s than performing gradient descent to find ŝ, as the full distribution can be computed
in a highly parallelized manner but gradient descent cannot.

Computation of the gradients involves the expectation term R̄ = Es⇠P✓(s|I,↵)[R(s)] (see Appendix
C for details), which is obtained by numerically integrating

R
s P✓(s|I,↵)R(s) with N samples

along each dimension. An efficient way of computing this quantity using Fast Fourier Transform is
detailed in Cohen & Welling (2015), although numerical integration is adequate for our purposes.

We used FISTA to greatly speed up the inference of ↵ by around a factor of 10 (Beck & Teboulle,
2009). While the objective lnP✓(↵|I) is not guaranteed to be convex in ↵, which violates one of

4

Preprint

Algorithm 1 Lie Group Sparse Coding Algorithm
1: ✓ = {W ,�} {W0,�0} . Initialize model parameters
2: while W ,� not converged do
3: Get normalized image batch I
4: ↵ ↵0 . Initialize sparse coefficients ↵̂
5: for i 2 {1, · · · , T} do . Compute ↵̂ = argmax↵ P✓(↵|I)
6: Compute P✓(s|I,↵)
7: �↵ Es⇠P✓(s|I,↵)[r↵ lnP✓(I|s,↵)] +r↵ lnP✓(↵) . Compute gradient for ↵
8: ↵ FISTA update(↵,�↵) . Update ↵ using FISTA
9: ↵̂ ↵

10: Compute P✓(s|I, ↵̂)
11: �� Es⇠P✓(s|I,↵̂)[r� lnP✓(I|s, ↵̂)] . Compute approximate gradient for �
12: � Normalize(�+��) . Update � and normalize columns
13: �W  Es⇠P✓(s|I,↵̂)[rW lnP✓(I|s, ↵̂)] . Compute approximate gradient for W
14: W  RiemannianAdam(W ,�W ) . Update W with RiemannianAdam optimizer

the approximate gradient
r✓ lnP✓(I) ⇡ Es⇠P✓(s|I,↵̂)[r✓ lnP✓(I|s, ↵̂)] (4)

where ↵̂ = argmax↵ P✓(↵|I) is the MAP estimate of the hidden variable ↵ (see Appendix C for
derivation details). Notice moreover that

r✓ lnP✓(I|↵̂) = Es⇠P✓(s|I,↵̂)[r✓ lnP✓(I|s, ↵̂)] (5)
and that the right hand side Eq. 5 is just our approximate gradient in Eq. 4. Hence, another inter-
pretation is that we replaced the original objective function lnP✓(I) by the approximate objective
function lnP✓(I|↵̂), which is much more computationally tractable than the original (see Appendix
B for an explicit formula for lnP✓(I|↵), and Appendix C for derivation details). The approximation
step assumes that the posterior distribution P (↵|I) is sharply peaked around ↵̂, P (↵|I) ⇡ �(↵�↵̂),
where �(x) is the Dirac delta function. This is the same approximation used in the sparse coding
algorithm by Olshausen & Field (1997). Also note the similarity between this approach and the
EM algorithm, as each gradient step partially maximizes the expectation of the log likelihood with
respect to the posterior distribution of the hidden variable given the current parameters. On the other
hand, the MAP estimate ↵̂ is computed by gradient ascent on the log-posterior, whose gradient is
computed via

r↵ lnP✓(↵|I) = Es⇠P✓(s|I,↵)[r↵ lnP✓(I|s,↵)] +r↵ lnP✓(↵) (6)
(see Appendix C for derivation details). Note that both Eq. 4 and 6 require inferring the posterior
distribution of the transformation variable P✓(s|I,↵). We show how this posterior distribution can
be computed in Appendix B.

One may wonder whether the posterior distribution P (s|I,↵) can be approximated by �(s� ŝ), just
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Memisevic & Hinton, 2010). Some bilinear models do not explicitly learn a transformation operator,215

but instead learn transformed versions of shape templates. As a result, the transformations learned216

will not easily generalize to new shapes (Tenenbaum & Freeman, 2000; Grimes & Rao, 2005). Other217

bilinear models do learn an explicit transformation operator, but because of the difficulty of inferring218

and learning large transformations, only local transformations are learned (Rao & Ballard, 1998;219

Olshausen et al., 2007).220

Attempts to learn larger transformations led to works on learning Lie group transformations. Typically,221

these transformations are learned from pairs of transformed images or a sequence/set of transforming222

images (Rao & Ruderman, 1999; Miao & Rao, 2007; Culpepper & Olshausen, 2009; Sohl-Dickstein223

et al., 2010). Early works learn the generator, or the Lie algebra, directly. Still, because of the compu-224

tational intractability of gradient descent with respect to the matrix exponential, first-order Taylor225

expansion of the matrix exponential is used during learning, limiting the ability to learn from images226

with large transformations (Rao & Ruderman, 1999; Miao & Rao, 2007). An important innovation of227

Sohl-Dickstein et al. (2010) was to diagonalize the generator, which allows for tractable Lie group228

learning from large transformations. This idea was formalized and generalized by Cohen & Welling229

(2014) using representation theory, allowing for the learning of complex, large transformations such230

as 3D rotation in a later paper (Cohen & Welling, 2015). This was an important generalization since231

describing the set of transformations on images as a representation of a Lie group rather than a Lie232

group itself, as is done in previous work, allows for the use of representation theory to simplify233

computations. For instance, the representation theory of the N -dimensional torus is used in deriving234

the simple parameterization of the transformation operator in this paper.235

5 Experiments236

To demonstrate that our algorithm can successfully disentangle different forms and transformation237

factors, we first train the model on two synthetic datasets in which the generative models are fully238

known. We set K = 10 and n = 2, meaning there are 10 dictionary templates and 2 latent dimensions239

for the transformation parameter s. In the first dataset, we select one image from each of the 10 digit240

classes in 28x28 MNIST, then apply 6000 random 2D translations to each of the 10 selected images,241

totaling 60000 images. Both vertical and horizontal translations are drawn uniformly between �7242

and 7 pixels. In the second dataset, instead of 2D translations, we apply 6000 random rotations and243

scaling to the 10 images. Rotation is drawn uniformly between �75� and 75�, while scaling is drawn244

uniformly between 0.5 and 1.0. Figure 1 shows 80 images from each dataset.245

2D Translation Dataset Rotation + Scaling Dataset

Figure 1: 80 example images from each of the two synthetic datasets

For each dataset, LSC can learn the 10 digits and the two operators that generated it (training details246

in Appendix E). Figure 2 shows the learned W matrices. The learned dictionary � is shown within247

figure 3. Notice that each of the learned dictionary template �i corresponds to one of the digits.248

Latent traversals of the two operators are shown at the bottom of figure 3, in which we select 5249

random images from the test set and apply the learned operator T (s) with varying s to those images.250

It is clear from the figure that the learned transformations are exactly the 2D translation operators and251

the rotation + scaling operators, respectively. Strikingly, even though the rotation + scaling dataset252

contains only rotations between �75� and 75�, the model learns the full 360� rotation. This ability253

to generalize and correctly extrapolate the transformation present in the dataset is a feature of the Lie254

group structure that is built into LSC.255

One might notice a slight mixture of rotation and scaling in the latent traversal plots in figure 3,256

which may seem to suggest that the algorithm failed to disentangle rotation and scaling completely.257

However, we note that there is no reason to require a one-to-one correspondence between (s1, s2)258
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and (rotation, scaling) since any other linear combination of these dimensions still allows these259

transformations to be performed perfectly.260

2D Translation Rotation + Scaling Full MNIST

Figure 2: The first 100 columns of W learned on the three different datasets. Each image shows a
column of W , and are ordered by increasing values of ||!||22

The inference process is demonstrated at the top of figure 3. An image I is given to the network,261

which then performs the inference procedure given in section 3.2 to yield the MAP estimate of the262

sparse coefficients ↵̂ and the posterior distribution of the transformation parameter P (s|I, ↵̂). A263

reconstruction of the input is then computed as Î = T (ŝ)�↵̂, where ŝ = argmaxs P (s|I, ↵̂) is the264

MAP estimate of the s. It can be seen from the figure that the inferred ↵ is essentially 1-sparse, and265

that the posterior distribution of s is sharply peaked at a particular value.266

Figure 3: Top: Inference and image reconstruction for five example inputs I from each dataset.
Bottom: Latent traversals of the transformation parameters s1 and s2, obtained by applying T (s)
with varying values of s to five images from each test set. Orange figure shows latent traversal of s1
from �⇡ to ⇡, while green figure shows latent traversal of s2 from �⇡ to ⇡. The network has been
trained on the respective datasets for 20 epochs.

We next trained our model on the full MNIST dataset in order to demonstrate its capacity to disentangle267

shape and transformations on data where the actual transformations are less clear and difficult to268

ascertain from first principles (see Appendix E for training details). The left side of figure 4269

are analogous to figure 3. We see that LSC learns 9 out of the 10 digits with its dictionary �,270

7
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2D Translation Dataset

Figure 3: Top: Inference and image reconstruction for five example inputs I from each dataset.
Bottom: Latent traversals of the transformation parameters s1 and s2, obtained by applying T (s)
with varying values of s to five images from each test set. Orange figure shows latent traversal of s1
from �⇡ to ⇡, while green figure shows latent traversal of s2 from �⇡ to ⇡. The network has been
trained on the respective datasets for 20 epochs.

We next trained our model on the full MNIST dataset in order to demonstrate its capacity to disentangle267

shape and transformations on data where the actual transformations are less clear and difficult to268

ascertain from first principles (see Appendix E for training details). The left side of figure 4269

are analogous to figure 3. We see that LSC learns 9 out of the 10 digits with its dictionary �,270

7

Results:  2D translation

learned W

learned  Φ



Results:  2D translation

learned W



and (rotation, scaling) since any other linear combination of these dimensions still allows these259

transformations to be performed perfectly.260

2D Translation Rotation + Scaling Full MNIST

Figure 2: The first 100 columns of W learned on the three different datasets. Each image shows a
column of W , and are ordered by increasing values of ||!||22

The inference process is demonstrated at the top of figure 3. An image I is given to the network,261

which then performs the inference procedure given in section 3.2 to yield the MAP estimate of the262

sparse coefficients ↵̂ and the posterior distribution of the transformation parameter P (s|I, ↵̂). A263
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reconstruction of the input is then computed as Î = T (ŝ)�↵̂, where ŝ = argmaxs P (s|I, ↵̂) is the264

MAP estimate of the s. It can be seen from the figure that the inferred ↵ is essentially 1-sparse, and265

that the posterior distribution of s is sharply peaked at a particular value.266

Rotation + Scaling Dataset

Figure 3: Top: Inference and image reconstruction for five example inputs I from each dataset.
Bottom: Latent traversals of the transformation parameters s1 and s2, obtained by applying T (s)
with varying values of s to five images from each test set. Orange figure shows latent traversal of s1
from �⇡ to ⇡, while green figure shows latent traversal of s2 from �⇡ to ⇡. The network has been
trained on the respective datasets for 20 epochs.

We next trained our model on the full MNIST dataset in order to demonstrate its capacity to disentangle267

shape and transformations on data where the actual transformations are less clear and difficult to268

ascertain from first principles (see Appendix E for training details). The left side of figure 4269

are analogous to figure 3. We see that LSC learns 9 out of the 10 digits with its dictionary �,270
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while the latent traversal plots show that the model has learned horizontal stretching and shearing271

transformations. Figure 2 also shows the columns of the learned W matrix. The reason that the272

dictionary did not learn the digit “1” is because, during inference, it always uses the learned horizontal273

stretching transform to “squeeze” a “0” into a “1”, so that a separate “1” template is not necessary. In274

our experiments we found that one could learn the “1” template if a prior on s with a narrow peak275

near 0 is used instead of a uniform prior, with the intuition being that the narrow prior prevents large276

horizontal stretching transformations from being used to squeeze a “0” into a “1”.277

We compare LSC to sparse coding alone by training it on MNIST as well with the same number of278

dictionary elements. The learned dictionary �, as well as the inference process, is shown on the right279

of figure 4. For comparison, the same five example inputs I were used in inference for both LSC and280

sparse coding. As can be seen, the reconstruction Î is significantly degraded without a transformation281

model. The inferred sparse representation ↵̂ is also less sparse and less interpretable than LSC – e.g.,282

the ‘8’ is described as a combination of ‘2’,‘0’ and ‘9’. Also, note that the dictionary � learned by283

sparse coding requires more than one template to capture the different poses of a digit, such as the284

slanted ‘1’ in the 4th dictionary element and the upright ‘1’ in the 7th element.285

LSC trained on MNIST

Figure 4: Top left: Inference and image reconstruction for five example inputs I from MNIST using
LSC. Bottom left: Latent traversals of the transformation parameters s1 and s2 using LSC. Orange
figure shows latent traversal of s1 from �1.5 to 1, while green figure shows latent traversal of s2
from �1.5 to 1. Top right: Inference and image reconstruction for the same five example inputs I
using sparse coding. Both LSC and sparse coding have been trained on MNIST for 20 epochs.

We demonstrate the improvement of LSC over sparse coding quantitatively in table 1. We train both286

algorithms on the same datasets while ensuring that both models use the same dictionary size and287

sparsity cost. After training for 20 epochs, we evaluate the two algorithms on a test set and calculate288

the reconstructed images’ SNR (signal-to-noise ratio). LSC outperforms sparse coding in all settings,289

and the improvement in SNR is over 10 times on the 2D translation dataset. This is particularly290

remarkable considering that we set the dimension of the transformation parameter s in LSC to be291

n = 2, meaning LSC only has two more degrees of freedom than sparse coding during the inference292

process.293

6 Discussion294

In this work, we study the problem of disentangling factors of variation in images, specifically discrete295

patterns vs. continuous transformations, which remains an open theoretical problem. To approach the296

problem, we combine Lie Group transformation learning and sparse coding within a Bayesian model.297

We show how spatial patterns and transformations can be learned as separate generative factors and298
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Fourier transform

<latexit sha1_base64="rE1kTCFS0MSwW/AGDaH7RGLQKkY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahXkoiRT0WvXisYNpCG8pmu2mXbjZhdyOW0N/gxYMiXv1B3vw3btIctPXBwOO9GWbm+TFnStv2t1VaW9/Y3CpvV3Z29/YPqodHHRUlklCXRDySPR8rypmgrmaa014sKQ59Trv+9Dbzu49UKhaJBz2LqRfisWABI1gbyQ3qT+eVYbVmN+wcaJU4BalBgfaw+jUYRSQJqdCEY6X6jh1rL8VSM8LpvDJIFI0xmeIx7RsqcEiVl+bHztGZUUYoiKQpoVGu/p5IcajULPRNZ4j1RC17mfif1090cO2lTMSJpoIsFgUJRzpC2edoxCQlms8MwUQycysiEywx0SafLARn+eVV0rloOJeN5n2z1rop4ijDCZxCHRy4ghbcQRtcIMDgGV7hzRLWi/VufSxaS1Yxcwx/YH3+AKSOje4=</latexit>

f(x)
<latexit sha1_base64="WGKftDbMD1ihTdQRS9D4u24DkoQ=">AAACJHicbZDLSsNAFIYn9VbrLerSTbAIFUpJpKggQtGNywr2Ak0sk+lJO3ZyYWYilDQP48ZXcePCCy7c+CwmbQRt/WHg5zvncOb8dsCokLr+qeQWFpeWV/KrhbX1jc0tdXunKfyQE2gQn/m8bWMBjHrQkFQyaAccsGszaNnDy7TeugcuqO/dyFEAlov7HnUowTJBXfXMlJT1IHLikum70MeH5+M5NDbLcBvdmWUzGNAfGBe6alGv6BNp88bITBFlqnfVN7Pnk9AFTxKGhegYeiCtCHNJCYO4YIYCAkyGuA+dxHrYBWFFkyNj7SAhPc3xefI8qU3o74kIu0KMXDvpdLEciNlaCv+rdULpnFoR9YJQgkemi5yQadLX0sS0HuVAJBslBhNOk79qZIA5JjLJNQ3BmD153jSPKsZxpXpdLdYusjjyaA/toxIy0AmqoStURw1E0AN6Qi/oVXlUnpV35WPamlOymV30R8rXN7CvpM0=</latexit>

f̃(!) = |f̃(!)| ej �(!)

<latexit sha1_base64="Ybm823tWNSp4pmbjI+/skqeYwPI="></latexit>

f̃(!) = F{f(x)} ⌘
Z

f(x) e�j!xdx

Power spectrum
<latexit sha1_base64="FaG/SVbbiRdNS1rVzkUn3TShVTI=">AAACCXicbVDLSsNAFL2pr1pfVZduBovgqiRSqsuiIC4r2Ac0oUymk3boZBJmJkIJ/QL3bvUX3Ilbv8I/8DOcpFlo64ELh3Pu5d57/JgzpW37yyqtrW9sbpW3Kzu7e/sH1cOjrooSSWiHRDySfR8rypmgHc00p/1YUhz6nPb86U3m9x6pVCwSD3oWUy/EY8ECRrA2kuuGWE8UkentvDKs1uy6nQOtEqcgNSjQHla/3VFEkpAKTThWauDYsfZSLDUjnM4rbqJojMkUj+nAUIFDqrw0v3mOzowyQkEkTQmNcvX3RIpDpWahbzrzG5e9TPzXyxSpArW0XwdXXspEnGgqyGJ9kHCkI5TFgkZMUqL5zBBMJDMfIDLBEhNtwsuicZaDWCXdi7rTrDfuG7XWdRFSGU7gFM7BgUtowR20oQMEYniGF3i1nqw36936WLSWrGLmGP7A+vwB7p6a9A==</latexit>

F
<latexit sha1_base64="KSShX1GP6RKgBB8FvsuRLRIZ8PI=">AAACEHicbVDLSgMxFM3UV62vUZdugkVsQcuMFHVZ1IXLCvYBnVIy6Z02NJMZkoy0lH6CG3/FjQtF3Lp059+YPhbaeuBeDufcS3KPH3OmtON8W6ml5ZXVtfR6ZmNza3vH3t2rqiiRFCo04pGs+0QBZwIqmmkO9VgCCX0ONb93PfZrDyAVi8S9HsTQDElHsIBRoo3Uso89TkSHAw5y/bx3YvqpdwNcE9zPY09OvFY/k2nZWafgTIAXiTsjWTRDuWV/ee2IJiEITTlRquE6sW4OidSMchhlvERBTGiPdKBhqCAhqOZwctAIHxmljYNImhIaT9TfG0MSKjUIfTMZEt1V895Y/M9rJDq4bA6ZiBMNgk4fChKOdYTH6eA2k0A1HxhCqGTmr5h2iSRUmwzHIbjzJy+S6lnBPS8U74rZ0tUsjjQ6QIcoh1x0gUroFpVRBVH0iJ7RK3qznqwX6936mI6mrNnOPvoD6/MHevKa+g==</latexit>

hf(x) f(x��x)ix
<latexit sha1_base64="znZvrZE7x2tAXQxqi+9J4WXoXWc=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBahXkoiRT0W68FjBfsBTSib7aRdutmE3Y1YQv+GFw+KePXPePPfuGlz0NYHA4/3ZpiZ58ecKW3b31ZhbX1jc6u4XdrZ3ds/KB8edVSUSAptGvFI9nyigDMBbc00h14sgYQ+h64/aWZ+9xGkYpF40NMYvJCMBAsYJdpIbrPq3gLXBD+dlwblil2z58CrxMlJBeVoDcpf7jCiSQhCU06U6jt2rL2USM0oh1nJTRTEhE7ICPqGChKC8tL5zTN8ZpQhDiJpSmg8V39PpCRUahr6pjMkeqyWvUz8z+snOrj2UibiRIOgi0VBwrGOcBYAHjIJVPOpIYRKZm7FdEwkodrElIXgLL+8SjoXNeeyVr+vVxo3eRxFdIJOURU56Ao10B1qoTaiKEbP6BW9WYn1Yr1bH4vWgpXPHKM/sD5/ACYzkHc=</latexit>

C(�x) <latexit sha1_base64="gaKTeqIG2tuLrgo6EQa8adKUIBQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5LvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mlE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6dukzxUyI8aWUKa4vZWwIVWUGRvONARv8eVl0jyrehfV8/vzSu0mj6MIR3AMp+DBJdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwDEBIze</latexit>=
<latexit sha1_base64="PoHRdLsoO9c4HWXXJ9nZmKjFWnA=">AAACD3icbZDLSsNAFIYn9VbrLerSzWBRqouSSFGXRTcuK9gLNLFMJift0MmFmYlQQt/Aja/ixoUibt26821M2ija+sPAz3fO4cz5nYgzqQzjUyssLC4trxRXS2vrG5tb+vZOS4axoNCkIQ9FxyESOAugqZji0IkEEN/h0HaGl1m9fQdCsjC4UaMIbJ/0A+YxSlSKevqhpRh3IfHGFSv0oU+O8A+5Pf5mpZ5eNqrGRHjemLkpo1yNnv5huSGNfQgU5UTKrmlEyk6IUIxyGJesWEJE6JD0oZvagPgg7WRyzxgfpMTFXijSFyg8ob8nEuJLOfKdtNMnaiBnaxn8r9aNlXduJyyIYgUBnS7yYo5ViLNwsMsEUMVHqSFUsPSvmA6IIFSlEWYhmLMnz5vWSdU8rdaua+X6RR5HEe2hfVRBJjpDdXSFGqiJKLpHj+gZvWgP2pP2qr1NWwtaPrOL/kh7/wLc8Jvm</latexit>

f̃(!)f̃⇤(!)
<latexit sha1_base64="4B+N5uxTjPK76tEtW4UmbG5vPJU=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZSkFHVZdOOygn1AE8tkctMOnTyYmQgl7cJfceNCEbf+hjv/xmmbhbYeuHA4517uvcdLOJPKsr6NldW19Y3NwlZxe2d3b988OGzJOBUUmjTmseh4RAJnETQVUxw6iQASehza3vBm6rcfQUgWR/dqlIAbkn7EAkaJ0lLPPB47inEfsmBSduIQ+uR8/FDFPbNkVawZ8DKxc1JCORo988vxY5qGECnKiZRd20qUmxGhGOUwKTqphITQIelDV9OIhCDdbHb/BJ9pxcdBLHRFCs/U3xMZCaUchZ7uDIkayEVvKv7ndVMVXLkZi5JUQUTni4KUYxXjaRjYZwKo4iNNCBVM34rpgAhClY6sqEOwF19eJq1qxb6o1O5qpfp1HkcBnaBTVEY2ukR1dIsaqIkoGqNn9IrejCfjxXg3PuatK0Y+c4T+wPj8AXHxlbo=</latexit>

|f̃(!)|2 <latexit sha1_base64="gaKTeqIG2tuLrgo6EQa8adKUIBQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5LvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mlE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6dukzxUyI8aWUKa4vZWwIVWUGRvONARv8eVl0jyrehfV8/vzSu0mj6MIR3AMp+DBJdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwDEBIze</latexit>=

Bispectrum

<latexit sha1_base64="W7DLjnrf1HWjDjK5O9EldO6GR1c=">AAACI3icbVDLSgMxFM34tr6qLt0Ei1BBy0wpKq5EXbisYFuhU4Y76Z0amskMSUZaiv/ixl9x40IRNy78F9PHwqoHEg7nnEtyT5gKro3rfjozs3PzC4tLy7mV1bX1jfzmVl0nmWJYY4lI1G0IGgWXWDPcCLxNFUIcCmyE3Yuh37hHpXkib0w/xVYMHckjzsBYKcif+gJkRyCNir19/8Deh/4lCgO0F3hWoFNKeZ/6apQPerkgX3BL7gj0L/EmpEAmqAb5d7+dsCxGaZgArZuem5rWAJThTOBDzs80psC60MGmpRJi1K3BaMcHumeVNo0SZY80dKT+nBhArHU/Dm0yBnOnf3tD8T+vmZnopDXgMs0MSjZ+KMoENQkdFkbbXCEzom8JMMXtXym7AwXM2FqHJXi/V/5L6uWSd1SqXFcKZ+eTOpbIDtklReKRY3JGrkiV1Agjj+SZvJI358l5cd6dj3F0xpnMbJMpOF/fbmihsQ==</latexit>

hf(x) f(x��x1) f(x��x2)ix

<latexit sha1_base64="9DTpgCOSCyRum4bxcFVGQs8xEWc=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoYKUpBR1WawLlxXsBdoQJtNJO3QyCTMTsYTixldx40IRtz6FO9/GSRtEW38Y+PjPOZw5vxcxKpVlfRm5peWV1bX8emFjc2t7x9zda8kwFpg0cchC0fGQJIxy0lRUMdKJBEGBx0jbG9XTevuOCElDfqvGEXECNODUpxgpbbnmQb3UuyJMIXjv2qc/WDkpuGbRKltTwUWwMyiCTA3X/Oz1QxwHhCvMkJRd24qUkyChKGZkUujFkkQIj9CAdDVyFBDpJNMTJvBYO33oh0I/ruDU/T2RoEDKceDpzgCpoZyvpeZ/tW6s/AsnoTyKFeF4tsiPGVQhTPOAfSoIVmysAWFB9V8hHiKBsNKppSHY8ycvQqtSts/K1ZtqsXaZxZEHh+AIlIANzkENXIMGaAIMHsATeAGvxqPxbLwZ77PWnJHN7IM/Mj6+AR2PlVU=</latexit>

C(�x1,�x2)

<latexit sha1_base64="FaG/SVbbiRdNS1rVzkUn3TShVTI=">AAACCXicbVDLSsNAFL2pr1pfVZduBovgqiRSqsuiIC4r2Ac0oUymk3boZBJmJkIJ/QL3bvUX3Ilbv8I/8DOcpFlo64ELh3Pu5d57/JgzpW37yyqtrW9sbpW3Kzu7e/sH1cOjrooSSWiHRDySfR8rypmgHc00p/1YUhz6nPb86U3m9x6pVCwSD3oWUy/EY8ECRrA2kuuGWE8UkentvDKs1uy6nQOtEqcgNSjQHla/3VFEkpAKTThWauDYsfZSLDUjnM4rbqJojMkUj+nAUIFDqrw0v3mOzowyQkEkTQmNcvX3RIpDpWahbzrzG5e9TPzXyxSpArW0XwdXXspEnGgqyGJ9kHCkI5TFgkZMUqL5zBBMJDMfIDLBEhNtwsuicZaDWCXdi7rTrDfuG7XWdRFSGU7gFM7BgUtowR20oQMEYniGF3i1nqw36936WLSWrGLmGP7A+vwB7p6a9A==</latexit>

F

<latexit sha1_base64="zqWAfSSWfsBRjkgdWuDCQI8AirY=">AAACMHicbVDLSsNAFJ34rPUVdelmsAhVoSSlqMuiC11WsA9oa5hMbtqhk0mYmQgl9JPc+Cm6UVDErV9h+qDU1gMDh3PO5c49bsSZ0pb1biwtr6yurWc2sptb2zu75t5+TYWxpFClIQ9lwyUKOBNQ1UxzaEQSSOByqLu966FffwSpWCjudT+CdkA6gvmMEp1KjnnT0ox7kPiDfCsMoEMc+wQvaMUZ7eF0mjyb2lnHzFkFawS8SOwJyaEJKo750vJCGgcgNOVEqaZtRbqdEKkZ5TDItmIFEaE90oFmSgUJQLWT0cEDfJwqHvZDmT6h8UidnUhIoFQ/cNNkQHRXzXtD8T+vGWv/sp0wEcUaBB0v8mOOdYiH7WGPSaCa91NCqGTpXzHtEkmoTjselmDPn7xIasWCfV4o3ZVy5atJHRl0iI5QHtnoApXRLaqgKqLoCb2iD/RpPBtvxpfxPY4uGZOZA/QHxs8vlTiopA==</latexit>

f̃(!1)f̃(!2)f̃
⇤(!1 + !2)

<latexit sha1_base64="d5RY3CLIqM3UFw6uIGvwFYy59Ng=">AAAB/nicbZDLSgMxFIYz9VbrbVRcuQkWoYKUmVLUZakblxXsBdphyKSZNjSTDElGKEPBV3HjQhG3Poc738ZMOwtt/SHw8Z9zOCd/EDOqtON8W4W19Y3NreJ2aWd3b//APjzqKJFITNpYMCF7AVKEUU7ammpGerEkKAoY6QaT26zefSRSUcEf9DQmXoRGnIYUI20s3z5pVgYiIiPku5c51C5Kvl12qs5ccBXcHMogV8u3vwZDgZOIcI0ZUqrvOrH2UiQ1xYzMSoNEkRjhCRqRvkGOIqK8dH7+DJ4bZwhDIc3jGs7d3xMpipSaRoHpjJAeq+VaZv5X6yc6vPFSyuNEE44Xi8KEQS1glgUcUkmwZlMDCEtqboV4jCTC2iSWheAuf3kVOrWqe1Wt39fLjWYeRxGcgjNQAS64Bg1wB1qgDTBIwTN4BW/Wk/VivVsfi9aClc8cgz+yPn8A/1uUOg==</latexit>

B(!1,!2)
<latexit sha1_base64="gaKTeqIG2tuLrgo6EQa8adKUIBQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5LvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mlE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6dukzxUyI8aWUKa4vZWwIVWUGRvONARv8eVl0jyrehfV8/vzSu0mj6MIR3AMp+DBJdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwDEBIze</latexit>= <latexit sha1_base64="gaKTeqIG2tuLrgo6EQa8adKUIBQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5LvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mlE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6dukzxUyI8aWUKa4vZWwIVWUGRvONARv8eVl0jyrehfV8/vzSu0mj6MIR3AMp+DBJdTgDurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwDEBIze</latexit>=



Fourier shift theorem

<latexit sha1_base64="MZjoRgwiEhUHtp9kmQ4kw2U5kn8=">AAAB9XicbVBNS8NAEN34WetX1aOXxSLUgyWRoh6LevBYwX5AG8tmu2mXbjZhd6Itof/DiwdFvPpfvPlv3LQ5aOuDgcd7M8zM8yLBNdj2t7W0vLK6tp7byG9ube/sFvb2GzqMFWV1GopQtTyimeCS1YGDYK1IMRJ4gjW94XXqNx+Z0jyU9zCOmBuQvuQ+pwSM9OCXRqedGyaA4NFJvlso2mV7CrxInIwUUYZat/DV6YU0DpgEKojWbceOwE2IAk4Fm+Q7sWYRoUPSZ21DJQmYdpPp1RN8bJQe9kNlSgKeqr8nEhJoPQ480xkQGOh5LxX/89ox+JduwmUUA5N0tsiPBYYQpxHgHleMghgbQqji5lZMB0QRCiaoNARn/uVF0jgrO+flyl2lWL3K4sihQ3SESshBF6iKblEN1RFFCj2jV/RmPVkv1rv1MWtdsrKZA/QH1ucPqN+RUw==</latexit>

f(x��x)

<latexit sha1_base64="Gjxo0iKfWryPwjMKbZDyDPuj/GI="></latexit>

F{f(x��x)} = e�j!�x f̃(!)

<latexit sha1_base64="3RtWj+SmvsmoO4tluHE3PVhFCbU=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5idzCZD5rHMzAoh5Ordq/6CN/Hqf/gHfoazyR40saChqOqmuytKODPW97+8wtr6xuZWcbu0s7u3f1A+PGoZlWpCm0RxpTsRNpQzSZuWWU47iaZYRJy2o/Ft5rcfqTZMyQc7SWgo8FCymBFsndTuKUGHuNQvV/yqPwdaJUFOKpCj0S9/9waKpIJKSzg2phv4iQ2nWFtGOJ2VeqmhCSZjPKRdRyUW1ITT+bkzdOaUAYqVdiUtmqu/J6ZYGDMRkesU2I7MspeJ/3qZok1slvbb+DqcMpmklkqyWB+nHFmFskTQgGlKLJ84golm7gNERlhjYl1uWTTBchCrpHVRDS6rtftapX6Th1SEEziFcwjgCupwBw1oAoExPMMLvHpP3pv37n0sWgtePnMMf+B9/gCwJZib</latexit>!

<latexit sha1_base64="09FmtrlQS4/bmY5kq/tz6LHe1T4=">AAACB3icbVDLSsNAFJ3UV62vqks3g0VwVRIRdVnUhcsK9oFtKJPpTTt0MgkzN2IJ/QD3bvUX3IlbP8M/8DNM2iy09cCFwzn3cu89XiSFQdv+sgpLyyura8X10sbm1vZOeXevacJYc2jwUIa67TEDUihooEAJ7UgDCzwJLW90lfmtB9BGhOoOxxG4ARso4QvOMJXuu9cgkdHHUqlXrthVewq6SJycVEiOeq/83e2HPA5AIZfMmI5jR+gmTKPgEialbmwgYnzEBtBJqWIBGDeZXjyhR6nSp36o01JIp+rviYQFxowDL+0MGA7NvJeJ/3qZoo1v5vajf+EmQkUxguKz9X4sKYY0C4X2hQaOcpwSxrVIP6B8yDTjmEaXRePMB7FImidV56x6entaqV3mIRXJATkkx8Qh56RGbkidNAgnijyTF/JqPVlv1rv1MWstWPnMPvkD6/MH+H6ZPA==</latexit>

�x

<latexit sha1_base64="5pHYlV05S3ANV6xgxgX510GS/oc=">AAAB/HicdVBdSwJBFJ21L7OvLR97GZLAXpbd1dTepHro0SBNcEVmx6sOzn4wMxuI2F/ppYcieu2H9Na/aVYNKurAhcM593LvPX7MmVS2/WFkVlbX1jeym7mt7Z3dPXP/oCWjRFBo0ohHou0TCZyF0FRMcWjHAkjgc7j1xxepf3sHQrIovFGTGLoBGYZswChRWuqZee8SuCJePGJFLwpgSE5yPbNgW2e1invqYtuy7apbqqTErZbdEna0kqKAlmj0zHevH9EkgFBRTqTsOHasulMiFKMcZjkvkRATOiZD6GgakgBkdzo/foaPtdLHg0joChWeq98npiSQchL4ujMgaiR/e6n4l9dJ1KDWnbIwThSEdLFokHCsIpwmgftMAFV8ogmhgulbMR0RQajSeaUhfH2K/yct13IqVvm6XKifL+PIokN0hIrIQVVUR1eogZqIogl6QE/o2bg3Ho0X43XRmjGWM3n0A8bbJ/djlFk=</latexit>

��(!)

<latexit sha1_base64="5pHYlV05S3ANV6xgxgX510GS/oc=">AAAB/HicdVBdSwJBFJ21L7OvLR97GZLAXpbd1dTepHro0SBNcEVmx6sOzn4wMxuI2F/ppYcieu2H9Na/aVYNKurAhcM593LvPX7MmVS2/WFkVlbX1jeym7mt7Z3dPXP/oCWjRFBo0ohHou0TCZyF0FRMcWjHAkjgc7j1xxepf3sHQrIovFGTGLoBGYZswChRWuqZee8SuCJePGJFLwpgSE5yPbNgW2e1invqYtuy7apbqqTErZbdEna0kqKAlmj0zHevH9EkgFBRTqTsOHasulMiFKMcZjkvkRATOiZD6GgakgBkdzo/foaPtdLHg0joChWeq98npiSQchL4ujMgaiR/e6n4l9dJ1KDWnbIwThSEdLFokHCsIpwmgftMAFV8ogmhgulbMR0RQajSeaUhfH2K/yct13IqVvm6XKifL+PIokN0hIrIQVVUR1eogZqIogl6QE/o2bg3Ho0X43XRmjGWM3n0A8bbJ/djlFk=</latexit>

��(!)



Power spectrum is invariant to shift
(but excessively so)

<latexit sha1_base64="9VrlsbeiIxrNw0MSoe9y/agLq5s=">AAACnnicbZFdSxtBFIZnV1s1tjXqpTeDQbGlDbuh1N4IfoCIUqpgNJBNwtnZs8no7Ox2ZlYIa36Wf8Q7/42TGMUmOTDw8px3Zs5HmAmujec9Oe7c/IePC4tLpeVPn7+slFfXrnSaK4Z1lopUNULQKLjEuuFGYCNTCEko8Dq8PRrmr+9QaZ7KS9PPsJVAV/KYMzAWdcoPQYhdLgv8J0Ep6A9KgeEiwiIe7ARpgl34St9I+9sb26Z7dPt+ynuP7eImyHr8FQyC77NdPyZsQWn0JJ3hbtdKAcroXY2dcsWreqOg08IfiwoZx3mn/BhEKcsTlIYJ0Lrpe5lpFaAMZwJt07nGDNgtdLFppYQEdasYjXdAtyyJaJwqe6ShI/r+RgGJ1v0ktM4ETE9P5oZwVq6Zm/h3q+Ayyw1K9vJRnAtqUjrcFY24QmZE3wpgittaKeuBAmbsRodD8CdbnhZXtar/q/rzolbZPxyPY5FskE2yQ3yyS/bJCTkndcKcDefAOXXOXOoeu3/cvy9W1xnfWSf/hdt4Bt+dzHg=</latexit>

f̃(!)f̃⇤(!) = |f̃(!)|ej�(!) |f̃(!)|e�j�(!) (1)

= |f̃(!)|2 (2)

<latexit sha1_base64="f1tNqrp/u0YPUi+bt7rah3bOdVI="></latexit>

e�j!�xf̃(!)ej!�xf̃⇤(!) = |f̃(!)|ej(�(!)�!�x) |f̃(!)|e�j(�(!)�!�x)

= |f̃(!)|2

Power spectrum

Power spectrum of shifted pattern



PROCEEDINGS OF THE  IEEE,  VOL. 69, NO. 5,  MAY 1981 529 

The Importance of Phase in Signals 

Invited Paper 

Absmzct-In the Fourier representation  of  signals, spectral magnitude 
and phase  tend to play  different roles and in m e  situations  many of 
the important features of  a signal are preserved if only the phase is re- 
tained. Furthennore, under  a variety of conditions,  such as when  a Sig- 
nal is of finite length,  phase  information  alone is sufficient to completely 
reconstruct  a signal to within  a scale factor. In this paper, we  review 
and discuss these observations and results in a number of different  con- 
texts and  applications. Speci f ica l ly ,  the intenigibility of ph-dy re- 
construction  for images, speech,  and crystaUographic structure% are 
iuustrated. Several approaches to justifying the relative importance of 
phase through statistical  arguments are presented,  along with a  number 
of  informal  arguments suggesting reasons  for the importance  of phm. 
SpeciFii  conditions  under  which  a  sequence can be exactiy  recon- 
structed  from  phase are reviewed, both for one-dimensional  and  multi- 
dimensional sequences,  and  algorithms  for both approximate  and exact 
reconstruction of signals from  phase  information are presented. A 
number of  applications  of the observations  and  results  in this paper  are 
suggested. 

I 
I. INTRODUCTION 

N THE FOURIER representation of signals, spectral mag- 
nitude  and phase tend to  play different roles and  in some 
situations,  many of the  important features of a signal are 

preserved  if only  the phase is retained. A corresponding  state- 
ment  cannot in general be  made for  the spectral magnitude. 
This observation  about phase has been made  in a number of  dif- 
ferent  contexts  and applications and including onedimensional, 
two-dimensional and three-dimensional signals. For example, 
both  phaseonly and magnitude-only acoustical and  optical 
holograms  have  been studied. For phase-only  holograms (also 
referred to as kinoforms)  only the phase  of the scattered wave- 
front is recorded  and the magnitude is assumed to be  constant 
while in  the magnitude-only hologram the phase is assumed to  
be zero  and  only the magnitude of the scattered wavefront is 
recorded. In general, with  reconstruction  from magnitude-only 
holograms, the reconstructed  object is not of much value in 
representing the original object whereas reconstructions  from 
phase-only  holograms  have many important  features  in com- 
mon with the original objects. Closely related to phase-only 
and magnitude-only holograms are phase-only and magnitude- 
only images.  As with  kinoforms, a phase-only image has  Fourier 
transform phase equal to that of the original  image and a Fourier 
transform  magnitude of unity  or perhaps  more generally repre- 
sentative of the spectral  magnitude of images such as the aver- 
age  over an ensemble  of unrelated images.  As is demonstrated 
by  the examples in  Section 11, many of the features of the 
original  image are clearly identifiable in the phase-only image 
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but  not  in  the magnitude-only image.  Similar observations 
have also been  made  in the  context of speech s igna ls  and X-ray 
crystallography. Specifically, for speech it has been shown that 
the intelligibility of a sentence is retained if the phase  of the 
Fourier  transform of a long segment of speech is combined  with 
unity magnitude. In the  context of X-ray crystallography, d e  
tails of the crystallographic structure  are  often  inferred  from X- 
ray  diffraction data. The Fourier  synthesis of the  structure from 
only the correct magnitude of the diffraction  data  with  zero 
phase in general does not preserve the atomic  structure whereas 
Fourier  synthesis using only  the correct  phase.with  unity mag- 
nitude does reflect the correct  atomic  structure. These exam- 
ples, elaborated on in Section 11, suggest very strongly the fact 
that  in many contexts  the phase contains  much of the essential 
“information”  in a signal. 

The above  discussion relates to the fact that if the  true mag- 
nitude  information is eliminated many of the  important char- 
acteristics of the signal are nevertheless retained. In the experi- 
ments  outlined above, the  true magnitude  information is simply 
replaced by a standard magnitude. With so much intelligibility 
incorporated  in the phase, it is natural to consider the possi- 
bility of recovering some or perhaps all of the magnitude  infor- 
mation  from  the phase. It is well known  that this is possible 
under  certain assumptions, such as when the signal  is  minimum 
phase.  Under this  assumption, the Hilbert transform can be 
used to recover the spectral  magnitude to within a gain factor 
from the phase.  However, many signals  of practical importance 
are not minimum-phase  signals and  consequently  this proce- 
dure  has  limited applicability. However,  as  we describe in Sec- 
tion IV, there are other  conditions which can be imposed on a 
signal such that it is exactly recoverable to within a scale  fac- 
tor from the phase. As we show, one  such  condition, which 
applies to discrete-time signals, is that  the signal be of finite 
duration  and have no zero-phase components. This set of con- 
ditions applies to a relatively broad class  of  signals and provides 
the potential for more precise synthesis of signals from phase 
information alone. 

Sections 11, 111, and IV demonstrate  the  importance of  phase 
both empirically and analytically. In Section V, we consider 
specific algorithmic procedures for  reconstructing a signal 
from phase information alone. This includes combining the 
phase with a standard  magnitude, combining the phase with 
an estimate of the magnitude,  and recovering all or some of 
the magnitude  information  from the phase using the  theory 
outlined in Section IV. 

The importance of  phase in signal representation has a num- 
ber of  important  implications  with regard to applications. In 
Section VI, we  review  several that have been developed or 
proposed. 

II. PHASE-ONLY FOURIER SYNTHESIS 
Apparently  independently,  and in a number of different con- 

texts, it has been recognized that many features of a signal 
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Figure 1: Bispectral Neural Networks. Leveraging the ansatz of the generalized bispectrum, Bispectral
Neural Networks simultaneously learn the group structure in a dataset and its corresponding group-invariant and
-equivariant representation spaces. The module is comprised of two layers: (1) a learnable linear transformation
parameterized by W , and (2) a fixed collection of triple products.

novel, out-of-distribution classes with the same group structure and facilitates downstream group-
invariant classification (Section 4.2). Further, we demonstrate that the trained network inherits the
completeness of the analytical model, which endows the network with strong adversarial robustness
(Section 4.3). Finally, we demonstrate that the weights of the network can be used to recover the
group Cayley table—the fundamental signature of a group’s structure (Section 4.4). Thus, an explicit
model of the group can be learned and extracted from the network weights. To our knowledge,
our work is the first to demonstrate that either a bispectrum or a group Cayley table can be learned
from data alone. Our results set the foundation of a new computational primitive for robust and
interpretable representation learning.

1.1 RELATED WORK

The great success and efficiency of convolutional neural networks owes much to built-in equivariance
to the group of 2D translations. In recent years, an interest in generalizing convolution to non-
Euclidean domains such as graphs and 3D surfaces has led to the incorporation of additional group
symmetries into deep learning architectures [6, 4]. In another line of work, Kakarala [22] and Kondor
[26] pioneered the use of the analytical bispectrum in signal processing and machine learning contexts.
These approaches require specifying the group of transformations a priori and explicitly building
their structure into the network architecture. However, the group transformations latent in a dataset
are often either unknown or too complex to specify analytically—for example, when the structure
arises from the interaction of many groups, or when the group acts on latent features in data.

Rather than specifying the relevant group transformations by hand, another line of work has sought
to learn latent group structure solely from symmetries contained in data. The majority of these
approaches use structured models that parameterize irreducible representations or Lie algebra genera-
tors, which act on the data through the group exponential map [34, 28, 8, 37, 7, 5]. In these models,
the objective is typically to infer the group element that acts on a template to generate the observed
data, with inference accomplished through Expectation Maximization or other Bayesian approaches.
One drawback of these models is that both the group exponential map and inference schemes are
relatively computationally expensive; thus, they are difficult to integrate into large-scale systems. A
recent feed-forward approach [1] learns distributions over the group of 2D affine transformations in a
deep learning architecture; however, the group is still specified in advance.

Here, we present a novel approach for learning groups from data in an efficient, interpretable, and fully
feed-forward model that requires no prior knowledge of the group, computation of the exponential
map, or bayesian inference. The key insight in our approach is to harness the generality of the form of
the group-invariant bispectrum, which can be defined for arbitrary compact groups, both commutative
and non-commutative. Here, we focus on the class of compact commutative groups.

2 THE BISPECTRUM

The theory of groups and their representations provides a natural framework for constructing compu-
tational primitives for robust machine learning systems. We provide a one-page introduction to these
mathematical foundations in Appendix A. Extensive treatment of these concepts can be found in the
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each irreducible representation can be uniquely identified with a group element. Consequently, the
(ij)th representation can obtained from the element-wise multiplication of the ith and jth irreducible
representations. Thus, the (conjugated) (ij)th coefficient can be obtained as

z†ij = (Wi �Wj)
†x, (8)

with � indicating the Hadamard (element-wise) product and † the complex conjugate. Plugging this
into Equation 7 and expanding the terms, we obtain the Bispectral Network:

�i,j(x) = Wix ·Wjx · (Wi �Wj)
†x (9)

Figure 1 illustrates the computation. Each linear term Wix is an inner product yielding a scalar value,
and the three terms are combined with scalar multiplication in C. Note that this equation shows the
computation of a single scalar output �i,j . In practice, this is computed for all non-redundant pairs.

Figure 1: Bispectral Neural Networks. A single linear neural network layer parameterized by W generates
the output z = Wx. Pairs of coefficients zi and zj and the corresponding weights Wi and Wj are then used to
compute the output of the network �i,j = zizjz

†
ij , with zij computed as (Wi �Wj)x. Here, the weights are

depicted as the canonical Fourier basis on S1 for illustrative purposes. In practice, the weights are randomly
initialized, but are expected to converge to the irreps of the group that structures the dataset.

While the bispectrum is a third-order polynomial, it results in only n2 rather than n3 products, due to
the constraint on the third term. Moreover, the bispectrum has many symmetries and is thus highly
redundant. The most obvious symmetry is reflection over the diagonal—i.e. �i,j = �j,i. However,
there are many more (see Appendix G). Here, we compute only the upper triangular of the matrix.

As the Bispectral Network computes third-order products of the input, the output values can be both
very large and very small, which can result in numerical instability during optimization. To combat
this, we normalize the output of the network to the unit sphere in Cn:

�̄(x) =
�(x)

||�(x)||2
(10)

We demonstrate in Appendix E that the analytical bispectrum can be normalized to the unit sphere
while preserving completeness up to a scalar factor (Appendix E, Theorem E.3). Thus, we similarly
expect that this normalization will not impact the robustness of the network.

3.2 ORBIT SEPARATION LOSS

Given a dataset X = {x1, ..., xm} with latent group structure and labels Y = {y1, ..., ym} indicating
which datapoints are equivalent up to transformation (but without information about the transformation
itself, i.e. how they are related), we wish to learn an invariant map that collapses elements of the same
group orbit and separates distinct orbits. Critically, we want this map to be both invariant to group
actions and selective to pattern structure—that is, to be complete [24]. A network that successfully
learns such a map will have implicitly learned the group that structures transformations in the data.

To that end, we introduce the Orbit Separation Loss. This loss encourages the network to map
elements of the same orbit to the same point in the representation space, while ensuring degenerate
solutions (i.e. mapping all inputs to the same point) are avoided:

L(xa) =
X

j|yb=ya

||�̄(xa)� �̄(xb)||22 + �||xa �W †W xa||22. (11)

The first term measures the Euclidean distance in the output space between points in the same
orbit. Thus, minimizing the loss encourages them to be closer. In the second term, the input xa is
reconstructed by inverting the linear transform as W †Wxa. The second term is thus a measure of
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Each linear term Wix is an inner product, yielding a scalar value, and the three terms are combined
with scalar multiplication operation · in C. Note that this equation shows the computation of a single
scalar output �i,j .
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Figure 3: Bispectral Network Architecture. A visual depiction of the architecture explained in Section 3.1.

While the bispectrum is a third-order polynomial, it only results in n
2 rather than n

3 products, due to
the constraint on the third term. Moreover, the bispectrum has many symmetries and is thus highly
redundant. The most obvious symmetry is reflection over the diagonal—i.e. �i,j = �j,i. However,
there are many more (see Appendix G). Here, we compute only the upper triangular of the matrix.

As the Bispectral Network computes third-order products of the input, the output values can be both
very large and very small, which can result in numerical instability during optimization. To combat
this, we normalize the output of the network to the unit sphere in Cn:

�̄(x) =
�(x)

||�(x)||2
, (9)

We demonstrate in Appendix E that the analytical bispectrum can be normalized to the unit sphere
while preserving completeness up to a scalar factor (Appendix E, Theorem E.3). Thus, we similarly
expect that this normalization will not impact the robustness of the network.

3.2 Orbit Separation Loss

Given a dataset X = {x1, ..., xm} with latent group structure and labels Y = {y1, ..., ym} indicating
which datapoints are equivalent up to transformation (but without information about the transformation
itself, i.e. how they are related), we wish to learn an invariant map that collapses elements of the same
group orbit and separates distinct orbits. Critically, we want this map to be both invariant to group
actions and selective to pattern structure—that is, to be complete [28]. A network that successfully
learns such a map will have implicitly learned the group that structures transformations in the data.

To that end, we introduce the Orbit Separation Loss. This loss encourages the network to map
elements of the same orbit to the same point in the representation space, while ensuring degenerate
solutions (i.e. mapping all inputs to the same point) are avoided:

L(xi) =
X

j|yj=yi

||�̄(xi)� �̄(xj)||2 + �||xi �W
†
W xi||2 (10)

The first term measures the Euclidean distance in the output space between points in the same
orbit. Thus, minimizing the loss encourages them to be closer. In the second term, the input xi is
reconstructed by inverting the linear transform as W †

Wxi. The second term is thus a measure of
whether information is preserved in the map. During training, each row vector in the weight matrix
W is normalized to unit length after every gradient update, which pushes W towards the manifold of
unitary matrices. The coefficient � weights the contribution of the reconstruction error to the loss.
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whether information is preserved in the map. During training, each row vector in the weight matrix
W is normalized to unit length after every gradient update, which pushes W towards the manifold of
unitary matrices. The coefficient � weights the contribution of the reconstruction error to the loss.

4 EXPERIMENTS AND ANALYSES

We now test the capacity of Bispectral Networks to learn a group by learning to separate orbit classes.
We conduct four experiments to analyze the properties of the architecture: learning Fourier transforms
on groups (Section 4.1), group-invariant classification (Section 4.2), model completeness (Section
4.3), and extracting the Cayley table (Section 4.4).

4.1 LEARNING FOURIER TRANSFORMS ON GROUPS

We first examine whether Bispectral Networks trained to separate orbit classes will learn the Fourier
transform and corresponding bispectrum of the group that structures the data. Here, we test the
network on two groups, which act on the image grid to generate image orbits. The first is one whose
bispectrum is known and well-understood: the group S1 ⇥ S1 of 2D cyclic translations, i.e. the
canonical 2D Fourier transform. The second is the group SO(2). To our knowledge, a bispectrum on
SO(2) acting on the grid (or disk) has not been defined in the mathematics literature, as the domain
is not a homogeneous space for the group—an assumption fundamental to much of bispectrum theory.
However, a Fourier transform for SO(2) acting on the disk has been defined [26] using the orthogonal
basis of disk harmonics. We thus expect our weight matrix W to converge to the canonical Fourier
basis for the group S1 ⇥ S1, and hypothesize the emergence of disk harmonics for SO(2).

Models are trained on datasets consisting of 100 randomly sampled (16, 16) natural image patches
from the van Hateren dataset [27] that have been transformed by the two groups to generate orbit
classes. Further details about the dataset can be found in Appendix H. Networks are trained to
convergence on the Orbit Separation Loss, Equation 11. All hyperparameters and other details about
the training procedure can be found in Appendix I.1.

Remarkably, we find that the relatively loose constraints of the orbit separation loss and the product
structure of the architecture is sufficient to encourage the network to learn a group-equivariant
Fourier transform and its corresponding bispectrum from these small datasets. This is observed in the
structure of the network weights, which converge to the irreducible representations of the group in
the case of S1 ⇥ S1, and filters resembling the disk harmonics for SO(2)) (Figure 2). Importantly,
we observe that the learned linear map (Equation 6) is equivariant to the action of the group on the
input, and the output of the network (Equation 10) is invariant to the group action on arbitrary input
signals. We visualize this in Figure 3 for transformed exemplars from the MNIST dataset, which the
model was not trained on, demonstrating the capacity of the model to generalize these properties to
out-of-distribution data.

Figure 2: Filters Learned in Bispectral Networks. Real components of weights learned in the Bispectral
Network trained on the transformed van Hateren Natural Images datasets, for S1 ⇥ S1 2D Translation (left) and
SO(2) 2D Rotation dataset (right). The full set of learned weights can be found in Appendix J.

4.2 GROUP-INVARIANT CLASSIFICATION

We next examine the utility of the rotation model learned in Section 4.1 for facilitating performance
on a downstream image classification task: digit classification for the Rotated MNIST dataset. For this
experiment, we append a simple multi-layer fully-connected ReLU network (MLP; the “classification
network”) to the output of the Bispectral Network and train it on the classification objective. While
the Bispectral Network learns to eliminate factors of variation due to group actions, the classification
network learns to eliminate other variations within digit classes irrelevant to classification, i.e. those
due to handwriting style. We train the classification model using the scheme described in Appendix I.
We compare the performance of our model to four leading approaches to group-invariant classification,
in addition to a Linear Support Vector Machine (SVM) model that we train as a baseline (Table 1).
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all inputs that map to the same point in model representation space to belong to the same orbit. That
is, the only perturbations in pixel space that will give rise to identical model representations are those
due to the group action.

We test the completeness of the trained models as follows. A batch of targets {x1, ..., xN}, x 2 Rm

are randomly drawn from the RotMNIST dataset. A batch of inputs {x̄1, ..., x̄N} , x̄ 2 Rm are
randomly initialized, with pixels drawn from a standard normal distribution. Both the targets and
random inputs are passed through the network to yield �̄(xi) (target) and �̄(x̄i) (adversary). The
following objective is minimized with respect to the x̄i:

L =
NX

i=0

||�̄(xi)� �̄(x̄i)||22 (12)

An optimized input x̄i is considered a model metamer if it yields a model representation within ✏ of
�̄(xi), is classified equivalently as xi, but is not in the orbit of xi. Here, we aim to minimize distance
between targets and adversaries in the model representation space—i.e. the output of the Bispectral
Network, prior to the classification model. For the comparison models E2CNN and Augerino, we use
the output of the layer prior to the softmax.

Figure 4 shows the targets and the optimized adversarial inputs for the Bispectral Network trained
on rotation in the van Hateren dataset, and the E2CNN and Augerino models trained on Rotated
MNIST. For the Bispectral Network, we observe that all random initializations consistently converge
to an element within the orbit of the target, indicating that the invariant map learned by the model
is close to complete. By contrast, many unrelated or noisy metameric images can be found for
E2CNN and Augerino. These metamers yield identical model representations (up to ✏) and identical
classifications as the targets, but are not contained in their orbits of the targets. Interestingly, the
metamers optimized for Augerino possess structure that at times resembles features in the target
image. We roughly estimate the percentage of these “perceptually similar” inputs as 35%. The model
nonetheless exhibits excessive invariance and is not complete.

Figure 4: Completeness in Bispectral Networks. Targets and optimized inputs for (left) E2CNN, (middle)
Augerino, and (right) Bispectral Networks. Images are randomly initialized and optimized to yield representations
identical to a target image. If a model possesses excessive invariance, there exist images that will yield equivalent
representations while being non-equivalent up to the group action. For Bispectral Networks, all optimized inputs
are within the orbits of the targets, indicating approximate completenes. By contrast, many model metamers are
found for E2CNN and Augerino.

4.4 LEARNING THE GROUP: EXTRACTING THE CAYLEY TABLE

Finally, we demonstrate that the converged network weights can be used to construct the group
itself —i.e. the product structure of the group, as captured by the group’s Cayley table. For finite
groups, a Cayley table provides a complete specification of group structure. Here, we demonstrate a
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