

How printing technologies can change the electronics industry

Ross Bringans
PARC, A Xerox Company
bringans@parc.com

About PARC

Founded in 1970 as Xerox Palo Alto Research Center

Spun out in 2002 as an independent research business.

PARC now

The Business of Breakthroughs®

PARC's open innovation business model

Introduction

- · How can the world of manufacturing be changed
 - Democratization of manufacturing
 - Mass customization
 - Just in time delivery
- · How can the printing business be expanded
 - Higher value "prints"
 - Completely new markets

For printers, there are some familiar challenges

- Custom at the same price as traditional
- Quality that meets the requirements
- Speed
- Skills mix
- Installed base

Outline

- Printed
- Screen
- Inkjet
- Gravure
- Offset
- Flexo
- Aerosol
- Extrusion
- 3D

- Electronics
- Conductors
- Passives
- Semiconductors
- Transistors
- Circuits
- 2D systems
- On 3D systems
- In 3D systems
- Optical devices
- (and chips)

Printed Intelligence

Why are people excited?

Printing can be used for:

1. Dispensing

Ink deposited into wells

Printing can be used for: 2. Patterning

Printing can be used for: 3. Assembly

Expensive serial assembly

Replaced by low cost parallel automation thru printing "chips as ink"

Printing can be used for: 4. Building

3D Printing

• Plastics, metals,

Images: pixabay.com; commons.wlkimedia.org

Printing can be used for: 5. Just-in-time manufacturing

NASA goal:

- · digitally manufactured sensor systems
- · On-site, on-demand, additively manufactured
- · Light weight, customizable, distributed sensor systems

And, printing promises:

6. Ability to make Really Complex Systems

Current state of the art

Integrated Object Printer

Integrated high density sensors

Integrated complex motor function

In nature

- Degree of Integration
- · Sensor density

European Framework SmartHand project

From Materials to Systems

Approaches to Printing Electronics

all-printed: all components printed from simple inks

hybrid: include some pre-fabricated components if needed

assembly: large scale assembly of electronic components

increasing performance, size of materials set, cost

1. All-printed Electronics

Printed conductors – already here

- RFID antennae
- · Membrane switches for keypads
- Touchpads
- · Automotive mirror defrosters
- Medical sensors e.g. EKG, EEG.

Gravure printing of electronic structures on paper (Wikimedia commons)

Copyright PolyIC

New directions in printed conductors

- Low temperature inks and high temperature papers
 - Nano particles

- Coated paper

Xerox Research Center Canada **Arjowiggins**

http://www.xrcc.external.xerox.com

Printing on 3D structures – Optomec examples

http://www.optomec.com

SUBSTRATE:
CERAMIC CUBE
INK:
Ag NANOPARTICLE
POST PROCESSING:
THERMAL 120C TO 180C

SUBSTRATE:
STACKED SILICON DIES AND EPOXY
CIRCUIT BOARD
PRINTED INIC.
Ag NAMOPARTICLE
POST PROCESS:
THERMAL AT 220°C
PHOTO COURTESY OF YERTICAL
CIRCUITS IN C.

Printed semiconductors

The foundational device: Printed Thin Film Transistor (TFT)

Printed complementary TFTs

From materials to circuits

Development Cycle

All-Printed Devices

Many device types can be printed from simple inks

¹APL, **2009**, 253302; ²IEEE Electron Dev. Lett., 34, **2013**, 271; ³JAP **2009**, 094504; ⁴Adv. Mater., **2011**, 3251, ⁵APL, **2013**, 233302; ⁵Org. Electron. **2011**, 682; ⁷APL **2013**, 103308

An expanding library: printed logic

AND, OR, NOT, NAND

Boolean logic

Ring oscillator

Shift register

Decoder

Pulse generator

Trigger with half latch

Memristor

An expanding library: printed arrays

Active matrix display

J. Soc. Info. Display 2007, 7, 485-490

Image sensor arrays

Appl. Phys. Lett. 92, 213303 (2008)

Memory arrays

An expanding library: sensors & interface

Temperature sensor

Amplifier

Flex battery

Light sensor

Pressure sensor

MEMS (acceleration, acoustic)

Applications for All-Printed Circuits

Many different applications

addressing systems2 (developed with Thin Film Electronics)