Edward Balog
Associate Professor
Ryanodine receptors (RyRs) are intracellular ion channels that mediate the release of calcium from intracellular stores. RyR1 and RyR2 are the predominate isoforms in skeletal and cardiac muscle, respectively where they play a central role in excitation-contraction coupling. RyRs are the largest known ion channels and are regulated by a multitude of endogenous effectors including ions, small molecules, and accessory proteins. An area of interest is the regulation of these channels by endogenous effectors, especially as it relates to altered contractile function associated with cardiac ischemia, skeletal muscle fatigue and aging.
Because of their central role in cellular calcium regulation, defects in RyR channels can lead to potentially fatal disorders. Mutations in RyR1 give rise to the pharmacogenetic skeletal muscle disorder, malignant hyperthermia (MH). RyR2 mutations have been identified in catecholaminergic polymorphic ventricular tachycardia. We are interested in determining the molecular mechanisms by which these mutations alter RyR channel function.
We analyze channel function on multiples levels of organization. Sarcoplasmic reticulum vesicle [3H]ryanodine binding is used to examine large populations of channels. We incorporate channels into artificial lipid bilayers in order to record single channel currents and assess channel kinetics. Calcium release from permeabilized muscle fibers provides a method of examining RyR function in situ. My research has two long-range goals. The first is to understand how intracellular calcium is regulated and how alterations in the regulation effects cell function. The second goal is to understand the RyR regulatory sites that might be exploited for the development of pharmacological compounds to treat disorders of cellular calcium regulation.
404-894-3957
Office Location:
AP 1303
Georgia Institute of Technology
Research in our laboratory focuses on a class of intracellular ion channels know as ryanodine receptors (RyRs). In mammals, there are three RyR isoforms. RyR1 and RyR2 are the predominate isoforms in skeletal and cardiac muscle, respectively where they are the primary efflux pathway for the release of calcium from the sarcoplasmic reticulum to activate contraction. RyR3 has a wide tissue distribution and contributes to calcium regulation in a variety of cell types. RyRs are the largest known ion channel and are regulated by a multitude of endogenous effectors, including ions, metabolites and regulatory proteins. Therefore, an area of interest is the regulation of these RyR channels by endogenous effectors; especially as it relates to altered contractile function associated with cardiac and skeletal disease, skeletal muscle fatigue and aging. We analyze channel function on multiples levels of organization. Sarcoplasmic reticulum vesicle [3H]ryanodine binding is used to examine large populations of channels. Individual channels are incorporated into artificial lipid bilayers in order to record single channel currents and assess channel kinetics. Calcium release from permeabilized muscle fibers provides a method of examining RyR function in situ. My research has two long-range goals. The first is to understand how intracellular calcium is regulated and how alterations in the regulation effects cell function. The second goal is to understand the RyR regulatory sites that could potentially be exploited for the development of pharmacological compounds to treat disorders of cellular calcium regulation.
Research Affiliations: Regenerative Engineering and Medicine (REM), Integrated Cancer Research Center, Immunoengineering
IRI Connection: