Nicholas Hud
Associate Director, Parker H. Petit Institute for Bioengineering and Bioscience
Regents’ Professor of Chemistry & Biochemistry
Director, NSF Center for Chemical Evolution
Nicholas Hud was born and raised in Los Angeles, California. He received his B.S. degree in physics from Loyola Marymount University. His Ph.D. was conferred by the University of California, Davis for physical investigations of DNA condensation by protamine. From 1992-1995 he was a postdoctoral fellow in the biology and biotechnology research program at Lawrence Livermore National Laboratory with Rod Balhorn. From 1995-1998 he was an NIH postdoctoral fellow in the Molecular Biology Institute at UCLA where he worked with Juli Feigon and Frank A. L. Anet on the application of NMR spectroscopy to the study of DNA-cation interactions. Hud joined the faculty at Georgia Tech as an assistant professor in 1999 and was promoted to full professor in 2008. He has been visiting professor of chemistry at the National NMR Center in Slovenia, and at Imperial College London. Hud currently serves as PI of the NSF Center for Chemical Evolution, as chair of the biochemistry division of the School of Chemistry and Biochemistry, as co-director of the Georgia Tech-Emory University Center for Fundamental and Applied Molecular Evolution (FAME), and as associate director of the Petit Institute for Bioengineering and Bioscience.
404-385-1162
Office Location:
Petit Biotechnology Building, Office 1108
Georgia Institute of Technology
Intercalation-mediated Nucleic Acid Assembly, The Molecular Midwife & the Origin of Life, Nucleic Acid-Cation Interactions, Understanding DNA & RNA Condensation. The research in our laboratory is directed towards elucidating the fundamental chemical and physical principles that govern nucleic acid (RNA and DNA) assembly. We are interested in how the physical properties of nucleic acids govern biological functions in contemporary life, and how these same properties provide clues to the origin and early evolution of life. We are also applying our knowledge of nucleic acids to problems that are of current importance in medicine and biotechnology. Specific projects include investigations of: 1) the origin and evolution of RNA; 2) cation, solvent and small molecule interactions with nucleic acids; 3) nucleic acid condensation and packaging; and 4) folding and evolution of the ribosome. Our research involves the application of a wide variety of physical and chemical techniques.
Research Affiliations: Center for Drug Design Development & Delivery, Center for Chemical Evolution, Center for Nanobiology of the Macromolecular Assembly Disorders - NanoMAD
IRI Connection: